线性回归、岭回归(Ridge Regression)和Lasso回归关系

线性回归、岭回归(Ridge Regression)和Lasso回归是三种常用的回归方法,本质都是线性回归方法,它们的核心区别在于对模型复杂度的控制方式以及对特征的处理。以下是它们的详细对比:


1. 线性回归(Linear Regression)

  • 核心思想:通过最小化预测值与真实值之间的均方误差(MSE)来拟合数据。
  • 损失函数
    J ( β ) = ∑ i = 1 n ( y i − β 0 − ∑ j = 1 p β j x i j ) 2 J(\beta) = \sum_{i=1}^n (y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij})^2 J(β)=i=1n(yiβ0j=1pβjxij)2
  • 特点
    • 无正则化项,直接最小化误差。
    • 当特征高度相关或特征数大于样本数时,模型容易过拟合。
    • 无法处理多重共线性问题(特征之间高度相关)。

2. Lasso回归(Lasso Regression)

  • 核心思想:在线性回归的损失函数中加入 L1正则化项,通过稀疏化系数实现特征选择。
  • 损失函数
    J ( β ) = ∑ i = 1 n ( y i − β 0 − ∑ j = 1 p β j x i j ) 2 + λ ∑ j = 1 p ∣ β j ∣ J(\beta) = \sum_{i=1}^n (y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij})^2 + \lambda \sum_{j=1}^p |\beta_j| J(β)=i=1n(yiβ0j=1pβjxij)2+λj=1pβj
  • 特点
    • L1正则化(系数的绝对值之和)会将部分系数压缩到零,从而实现特征选择。
    • 适用于高维数据(特征数远大于样本数)的场景,可自动筛选重要特征。
    • 当特征高度相关时,Lasso可能随机选择一个特征,而岭回归会平分权重。

3. 岭回归(Ridge Regression)

  • 核心思想:在线性回归的损失函数中加入 L2正则化项,通过对系数进行约束防止过拟合。
  • 损失函数
    J ( β ) = ∑ i = 1 n ( y i − β 0 − ∑ j = 1 p β j x i j ) 2 + λ ∑ j = 1 p β j 2 J(\beta) = \sum_{i=1}^n (y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij})^2 + \lambda \sum_{j=1}^p \beta_j^2 J(β)=i=1n(yiβ0j=1pβjxij)2+λj=1pβj2
  • 特点
    • L2正则化(系数的平方和)会压缩系数大小,但不会将系数完全压缩到零。
    • 适用于处理多重共线性问题,提高模型的稳定性。
    • 超参数 (\lambda) 控制正则化强度:(\lambda) 越大,系数压缩越明显。

核心区别总结

特性线性回归Lasso回归(L1)岭回归(L2)
正则化项L1正则化(系数绝对值之和)L2正则化(系数平方和)
系数处理可能过大或过拟合压缩部分系数到零(稀疏化)压缩系数但不为零
特征选择能力
适用场景低维、无共线性高维、需要特征选择高维、存在共线性
超参数调优 λ \lambda λ(控制稀疏性) λ \lambda λ(控制压缩强度)
几何解释无约束优化菱形约束(系数在菱形顶点)圆形约束(系数在圆内)

补充说明

  • 弹性网络(Elastic Net):结合了L1和L2正则化,适用于同时需要特征选择和解决共线性的场景。
  • 选择建议
    • 如果特征数量多且需要筛选,用Lasso。
    • 如果特征之间有强相关性,用岭回归。
    • 如果特征数远大于样本数,优先Lasso或弹性网络。

理解三者的区别有助于根据实际问题选择合适的模型,平衡模型的偏差与方差,提升泛化能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值