MPC(Model Predictive Control)原理与实践问题

1. 基本原理

MPC(Model Predictive Control,模型预测控制)是一种先进的控制策略,其核心思想是通过预测模型来预测系统未来的行为,并基于优化算法计算出最优的控制输入。MPC的基本步骤包括:

  1. 预测模型:使用系统的数学模型来预测未来的状态或输出。
  2. 优化问题:在预测的时间范围内,通过优化算法求解最优的控制输入,使得系统的性能指标最小化。(二次规划问题)
  3. 滚动优化:在每个控制周期,重新进行预测和优化,并将第一个控制输入应用到系统中。

MPC的主要优点在于它能够显式地处理多变量系统、约束条件和非线性问题。

2. 基本公式

2.1 系统模型

假设系统的离散时间状态空间模型为:

x ( k + 1 ) = A x ( k ) + B u ( k ) x(k+1) = A x(k) + B u(k) x(k+1)=Ax(k)+Bu(k)

y ( k ) = C x ( k ) + D u ( k ) y(k) = C x(k) + D u(k) y(k)=Cx(k)+Du(k)

其中:

  • ( x(k) ) 是系统在时刻 ( k ) 的状态向量。
  • ( u(k) ) 是系统在时刻 ( k ) 的控制输入向量。
  • ( y(k) ) 是系统在时刻 ( k ) 的输出向量。
  • ( A, B, C, D ) 是系统的状态空间矩阵。

2.2 预测模型

在MPC中,我们通常使用预测模型来预测系统在未来 ( N ) 步内的状态和输出。预测模型可以表示为:

x ( k + i ∣ k ) = A x ( k + i − 1 ∣ k ) + B u ( k + i − 1 ∣ k ) x(k+i|k) = A x(k+i-1|k) + B u(k+i-1|k) x(k+ik)=Ax(k+i1∣k)+Bu(k+i1∣k)

y ( k + i ∣ k ) = C x ( k + i ∣ k ) + D u ( k + i ∣ k ) y(k+i|k) = C x(k+i|k) + D u(k+i|k) y(k+ik)=Cx(k+ik)+Du(k+ik)

其中:

  • ( x ( k + i ∣ k ) ) ( x(k+i|k) ) (x(k+ik)) 表示在时刻 ( k ) ( k ) (k)预测的 ( k + i ) ( k+i ) (k+i)时刻的状态。
  • ( u ( k + i ∣ k ) ) ( u(k+i|k) ) (u(k+ik)) 表示在时刻 ( k ) ( k ) (k) 预测的 ( k + i ) ( k+i ) (k+i) 时刻的控制输入。
  • ( y ( k + i ∣ k ) ) ( y(k+i|k) ) (y(k+ik)) 表示在时刻 ( k ) ( k ) (k) 预测的 ( k + i ) ( k+i ) (k+i) 时刻的输出。

2.3 优化问题

MPC的核心是通过优化算法求解最优的控制输入序列 ( u ( k ∣ k ) ( u(k|k) (u(kk), u ( k + 1 ∣ k ) u(k+1|k) u(k+1∣k), … \dots , u ( k + N − 1 ∣ k ) ) u(k+N-1|k) ) u(k+N1∣k)),使得系统的性能指标最小化。通常,性能指标可以表示为:

J = ∑ i = 1 N ( y ( k + i ∣ k ) − y r e f ( k + i ) ) T Q ( y ( k + i ∣ k ) − y r e f ( k + i ) ) + ∑ i = 0 N − 1 u ( k + i ∣ k ) T R u ( k + i ∣ k ) J = \sum_{i=1}^{N} \left( y(k+i|k) - y_{ref}(k+i) \right)^T Q \left( y(k+i|k) - y_{ref}(k+i) \right) + \sum_{i=0}^{N-1} u(k+i|k)^T R u(k+i|k) J=i=1N(y(k+ik)yref(k+i))TQ(y(k+ik)yref(k+i))+i=0N1u(k+ik)TRu(k+ik)

其中:

  • ( y r e f ( k + i ) ) ( y_{ref}(k+i) ) (yref(k+i)) ( k + i ) ( k+i ) (k+i) 时刻的参考输出。
  • ( Q ) ( Q ) (Q) ( R ) ( R ) (R) 是权重矩阵,分别用于惩罚输出误差和控制输入。

2.4 约束条件

在实际应用中,控制输入和状态通常受到约束。常见的约束条件包括:

u m i n ≤ u ( k + i ∣ k ) ≤ u m a x u_{min} \leq u(k+i|k) \leq u_{max} uminu(k+ik)umax

x m i n ≤ x ( k + i ∣ k ) ≤ x m a x x_{min} \leq x(k+i|k) \leq x_{max} xminx(k+ik)xmax

2.5 滚动优化

在每个控制周期 ( k ) ( k ) (k),MPC执行以下步骤:

  1. 测量当前状态 ( x ( k ) ) ( x(k) ) (x(k))
  2. 使用预测模型预测未来 ( N ) ( N ) (N) 步的状态和输出。
  3. 求解优化问题,得到最优的控制输入序列 ( u ( k ∣ k ) , u ( k + 1 ∣ k ) , … , u ( k + N − 1 ∣ k ) ) ( u(k|k), u(k+1|k), \dots, u(k+N-1|k) ) (u(kk),u(k+1∣k),,u(k+N1∣k))
  4. 将第一个控制输入 ( u ( k ∣ k ) ) ( u(k|k) ) (u(kk)) 应用到系统中。
  5. 在下一个控制周期 ( k + 1 ) ( k+1 ) (k+1),重复上述步骤。

3. MPC实践应用问题

在实际应用中,模型预测控制(MPC)可能会遇到以下几类问题:

①、模型准确性与复杂度问题

  • 模型精度问题:MPC的性能依赖于系统模型的准确性,但在实际中,模型与真实系统之间往往存在误差或失配。例如,系统参数随时间变化、未建模的动态特性、外部扰动等因素,都会导致模型预测的未来状态与实际状态存在偏差,从而影响控制效果。
  • 模型复杂度与计算量:对于复杂的非线性系统,建立精确的模型可能非常困难且计算复杂。高阶模型或复杂的非线性模型会增加优化问题的求解难度和计算时间,限制了MPC在实时性要求较高的系统中的应用。

②、计算资源与效率问题

  • 在线计算负担:MPC需要在每个采样时刻在线求解一个优化问题,对于大规模系统或预测时域较长的情况,计算量可能会非常大,导致控制律的计算时间过长,无法满足系统的实时控制要求。
  • 算法收敛性与稳定性:某些情况下,优化算法可能无法在有限时间内收敛到最优解或可行解,特别是在系统受到较大扰动或模型发生突变时。这会影响MPC的稳定性和可靠性,甚至可能导致系统失稳。

③、调参复杂性

  • 权重系数选择困难:MPC的目标函数中通常包含多个性能指标的权重系数,这些权重系数的选择对控制性能有重要影响。然而,合理地选择权重系数往往需要大量的试验和调整,缺乏系统的理论指导,这增加了控制器设计的难度和工作量。
  • 预测时域和控制时域的选择:预测时域和控制时域的长度也是需要仔细调整的参数。过长的预测时域会增加计算量,而过短的预测时域可能无法充分考虑系统的未来行为;控制时域的选择则会影响控制动作的平滑性和系统的响应速度。

4. 补充二次规划介绍

二次规划(Quadratic Programming,QP)是一类特殊的非线性规划问题,其目标函数是二次函数,约束条件是线性的。二次规划问题的一般形式为:

min ⁡ x 1 2 x T Q x + c T x s.t. A x ≤ b A e q x = b e q l ≤ x ≤ u \begin{aligned} \min_{x} \quad & \frac{1}{2} x^T Q x + c^T x \\ \text{s.t.} \quad & A x \leq b \\ & A_{eq} x = b_{eq} \\ & l \leq x \leq u \end{aligned} xmins.t.21xTQx+cTxAxbAeqx=beqlxu

其中, x x x 是决策变量向量, Q Q Q 是对称矩阵(通常要求正定或半正定以保证问题的凸性), c c c 是线性项系数向量, A A A A e q A_{eq} Aeq 分别是不等式约束和等式约束的系数矩阵, b b b b e q b_{eq} beq 是约束右侧的常数向量, l l l u u u 是决策变量的下界和上界。

二次规划的目标是在满足所有约束条件的情况下,找到使目标函数取得最小值的决策变量值。MATLAB中可使用quadprog函数去求解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值