牛顿法求解方程的根和最优化问题

1. 牛顿法求解方程的零点

利用牛顿法可以迭代求解方程的根:

首先利用泰勒公式,在x=x_0处进行一阶展开

f(x) = f(x_0) + \dot f(x_0)(x-x_0)

欲求解方程的根,即令f(x)=0,可得:

f(x_0) + (x - x_0)\dot f(x_0) = 0

通过上述等式,进一步求解x=x_0处下一个迭代步的临近点

x = x_1 = x_0 - \frac{f(x_0)}{\dot f(x_0)}

迭代求解公式:

x_{n+1} = x_n - \frac{f(x_n)}{\dot f(x_n)}

2. 牛顿法求解最优化问题

欲求解\dot f = 0的根,需要将f(x)在目标点x=x_n处二阶泰勒展开:

f(x) = f(x_n) + \dot f(x_n)(x - x_n) + \frac{\ddot f(x_n)}{2}(x - x_n)^2

由于需要求解\dot f = 0的根,所以需要对上式进行求导:

\dot f(x) = \dot f(x_n) + \ddot f(x_n)(x - x_n) = 0

最终类似于求解方程零点,推导出牛顿法求解最优化问题的迭代公式:

x_{n + 1} = x_n - \frac{\dot f(x_n)}{\ddot f(x_n)}, n = 0,1,2...

3. 牛顿法求解高维优化问题

x_{n+1} = x_n-H^{-1}(x_n)\nabla f(x_n), n\geq 0

其中H表示海塞矩阵,\nabla f(x_n)表示f(x_n)的梯度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值