连续、离散时间零化神经网络(ZNN)求解动态矩阵线性方程、动态矩阵逆、动态矩阵Moore-Penrose逆问题

1. 连续、离散ZNN求解动态矩阵线性方程问题:

动态矩阵线性方程问题的定义:A(t)x(t)=b(t)

定义误差函数:\epsilon(t)=A(t)x(t)-b(t)

零化神经网络ZNN的演化公式:\dot\epsilon(t)=-\gamma\epsilon(t)

综合推导可得用于求解动态矩阵线性方程问题的连续时间ZNN模型

A(t)\dot x(t)=-\dot A(t)x(t)+\dot b(t)-\gamma (A(t)x(t)-b(t))

欧拉前向差分定义:

\dot x_n=\frac{x_{n+1}-x_n}{g}

上式中的g表示采样间隔

即可推导得出用于求解动态矩阵线性方程问题的离散时间ZNN模型

x_{n+1}=x_n + A^{\dagger}_n(-(A_n-A_{n-1})x_n+b_n-b_{n-1}-\gamma g(A_nx_n - b_n))

2. 连续、离散ZNN求解动态矩阵逆问题:

动态矩阵线性方程问题的定义:A(t)x(t)=I

定义误差函数:\epsilon(t)=A(t)x(t)-I

零化神经网络ZNN的演化公式:\dot\epsilon(t)=-\gamma\epsilon(t)

综合推导可得用于求解动态矩阵逆问题的连续时间ZNN模型

A(t)\dot x(t)=-\dot A(t)x(t)-\gamma (A(t)x(t)-I)

欧拉前向差分定义:

\dot x_n=\frac{x_{n+1}-x_n}{g}

上式中的g表示采样间隔

根据欧拉前向展开公式进一步推导:

A_n \frac{x_{n+1}-x_n}{g}=-\frac{A_n - A_{n-1}}{g}x_n-\gamma(A_nx_n-I)

A_n x_{n+1}-A_n x_n=-(A_n-A_{n-1})x_n-\gamma g(A_nx_n-I)

最终整理得到用于求解动态矩阵逆问题的离散时间ZNN模型

x_{n+1}=x_n-x_n(-(A_n-A_{n-1})x_n-\gamma g(A_nx_n-I))

3. 连续、离散ZNN求解动态矩阵Moore-Penrose逆问题:

动态矩阵的Moore-Penrose逆定义:

M^\text{T}(t)=M^{\dagger}(t)M(t)M^{\text{T}}(t), m<n

M^\text{T}(t)=M^{\text{T}}(t)M(t)M^{\dagger}(t), m>n

上式表示的是右Moore-Penrose逆,下式表示的是左伪逆,在这里仅讨论右伪逆的推导方式。

构造误差函数:\epsilon(t) = X(t)M(t)M^{\text{T}}(t)-M^{\text{T}}(t)

零化神经网络ZNN的演化公式:\dot\epsilon(t)=-\gamma\epsilon(t)

综合推导可得用于求解动态矩阵Moore-Penrose逆问题的连续时间ZNN模型

\small \dot X(t)M(t)M^T(t)=-X(t)\dot M(t)M^T(t)-X(t)M(t)\dot M^T(t)+\dot M^T(t) -\gamma (X(t)M(t)M^T(t)-M^T(t))

进一步推导可得:

\small \dot X(t)=(-X(t)\dot M(t)M^T(t)-X(t)M(t)\dot M^T(t)+\dot M^T(t) -\gamma (X(t)M(t)M^T(t)-M^T(t)))(M(t)M^T(t))^{-1}

使用欧拉前线公式离散化:

\small x_{n+1}=x_n(-x_n(M_n-M_{n-1})M^T_n-x_nM_n(M^T_n-M^T_{n-1})+M_n^T-M_{n-1}^T-\gamma g(x_nM_nM^T_n-M_n^T))(M_nM_n^T})^{-1}

综合推导可得用于求解动态矩阵Moore-Penrose逆问题的离散时间ZNN模型

  • 6
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值