D - The Child and Sequence(区间取模线段树)

D - The Child and Sequenceicon-default.png?t=M666https://vjudge.net/contest/503800#problem/D

本题甚至不用设置lazytag,只需给传统线段树的基础上维护一个区间最大值,如果区间最大值小于要取模数,那么就不用继续对向下的结点进行操作,否则,我们就递归到叶子结点进行更新。从而大幅度优化时间复杂度。

#include <bits/stdc++.h>
#pragma GCC optimize(3,"Ofast","inline")
#pragma GCC optimize(2)
#define ll long long
#define int long long 
#define endl '\n'
#define PII pair<int, int>
using namespace std;
const int N = 2e5 + 10, INF = 0x3f3f3f3f, mod = 1e9 + 7;
int read() {
    int x=0,f=1;
    char c=getchar();
    while(c<'0'||c>'9'){if(c=='-') f=-1;c=getchar();}
    while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
    return x*f;
}
void write(int x) {
     if(x<0) putchar('-'),x=-x;
     if(x>9) write(x/10);
     putchar(x%10+'0');
}
struct node
{
    int l, r;
    int sum;
    int maxx;
}t[N<<2];
int a[N];
void pushup(int p)
{
    t[p].sum = t[p << 1].sum + t[p << 1 | 1].sum;
    t[p].maxx = max(t[p << 1].maxx, t[p << 1 | 1].maxx);
}
void build(int p,int l,int r)
{
    t[p] = {l, r,0, 0};
    if(l==r)
    {
        t[p].sum = a[l];
        t[p].maxx = a[l];
        return;
    }
    int mid = l + r >> 1;
    build(p << 1, l, mid);
    build(p << 1 | 1, mid + 1, r);
    pushup(p);
}
void modify(int p,int l,int r,int x)
{
    if(t[p].l>=l&&t[p].r<=r&&t[p].maxx<x)return;
    if(t[p].l==t[p].r)
    {
        t[p].sum %= x;
        t[p].maxx = t[p].sum;
        return;
    }
    if(t[p<<1].r>=l)
        modify(p << 1, l, r,x);
    if(t[p<<1|1].l<=r)
        modify(p << 1 | 1, l, r,x);
    pushup(p);
}
void update(int p,int f,int x)
{
    if (t[p].l == t[p].r)
    {
        t[p].sum = x;
        t[p].maxx = x;
        return;
    }
    if(f<=t[p<<1].r)
        update(p << 1, f, x);
    else
        update(p << 1 | 1, f, x);
    pushup(p);
}
int query(int p,int l,int r)
{
    if(t[p].l>=l&&t[p].r<=r)
    {
        return t[p].sum;
    }
    int res = 0;
    if(t[p<<1].r>=l)
        res+=query(p << 1, l, r);
    if(t[p<<1|1].l<=r)
        res+=query(p << 1 | 1, l, r);
    return res;
}
signed main()
{
    int n,m;
    n = read();
    m = read();
    for (int i = 1; i <= n;i++){
        a[i] = read();
    }
    build(1, 1, n);
    while(m--)
    {
        int op;
        op=read();
        if(op==1)
        {
            int l, r;
            l = read(), r = read();
            write(query(1, l, r));
            puts("");
        }
        else if(op==2)
        {
            int l, r, x;
            l = read(), r = read(), x = read();
            modify(1, l, r, x);
        }
        else if(op==3)
        {
            int f, x;
            f = read(), x = read();
            update(1, f, x);
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值