论文笔记:[ACL2016]End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF

文章:Ma X, Hovy E. End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF[J]. 2016. 发表在ACL2016上。我认为这是一篇写的非常清楚的文章,它要解决的是序列标注的问题。下面是我的阅读笔记。

1. Introduction

本文要解决的是序列标注的问题,可用于POS、NER等任务。

传统方法

大部分传统的高效模型是线性统计模型,包括HMM,CRF等。

存在问题:
  • 非常依赖手工特征(hand-craft features)
  • 任务相关的资源

这导致models difficult to adapt to new tasks or new domains.

近期方法

近些年有一些非线性神经网络模型用词向量(Word Embedding)作为输入,颇为成功。有前馈神经网络、循环神经网络(RNN)、长短期记忆模型(LSTM)、GRU,取得了很有竞争力的结果。

存在问题:

它们把词向量作为参数而不是取代手工特征,作者说如果仅依赖词向量,效果将变得很差。“Their performance drops rapidly when the models solely depend on neural embeddings.”我不明白作者说的solely depend on 说的是什么,没有参考文献。

本文贡献
  1. a novel neural network architecture for linguistic sequence labeling:
  2. empirical evaluations on benchmark data sets for two classic NLP tasks.
  3. state-of-the-art performance with truly end-to-end system.

作者强调 end-to-end 的价值:

  • no task-specific resources,
  • no feature engineering,
  • no data pre-processing beyond pre-trained word embeddings on unlabeled corpora.

2. 本文方法

步骤一:用Character-level CNN获得词表示。
这里写图片描述

步骤二:把步骤一的词表示和事先训练好的词向量拼接起来,输入Bi-directional LSTM,得到每个状态的表示。注意,BLSTM的输入和输出都过了Dropout层(下图未画出)。

步骤三:用步骤二的输出输入CRF层,最终预测。

总体的流程图如下:

这里写图片描述

3. 模型训练

因为包含CNN的部分,GPU自然是要的,作者介绍使用了GeForce GTX TITAN X GPU,POS tagging用了12小时,NER用了8小时。在这一部分,作者介绍了各种参数的配置、优化算法,其中就有很多trick。这里的介绍将结合论文的第三模块模型训练和第四模块实验一起来看

参数配置
词向量
  • Glove: 100-dimensional embeddings trained on 6 billion words from Wikipedia and web text (Pennington et al., 2014) http://nlp.stanford.edu/projects/glove/
  • Senna: 50-dimensional embeddings trained on Wikipedia and Reuters RCV-1 corpus (Collobert et al.
  • 6
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值