特征工程

特征工程是机器学习中的重要步骤,包括时间戳处理、类别属性分解、分箱/分区、交叉特征、特征选择、特征缩放和特征提取等方法。通过合理处理数据,减少噪声干扰,能帮助模型更好地发现数据趋势,提高预测准确性。异常值处理、特征构造和特征筛选也是特征工程中的关键环节,有助于构建更优的模型。
摘要由CSDN通过智能技术生成

特征工程

1.特征工程的含义

特征工程是能够将数据像艺术一样展现的技术。好的特征工程很好的混合了专业领域知识、直觉和基本的数学能力。但是最有效的数据呈现其实并不涉及任何的数据运算。
本质上来说,呈现给算法的数据应该能拥有基本数据的相关结构或属性。当你做特征工程时,其实是将数据属性转换为数据特征的过程,属性代表了数据的所有维度,在数据建模时,如果对原始数据的所有属性进行学习,并不能很好的找到数据的潜在趋势,而通过特征工程对你的数据进行预处理的话,你的算法模型能够减少受到噪声的干扰,这样能够更好的找出趋势。事实上,好的特征甚至能够帮你实现使用简单的模型达到很好的效果。

2.特征工程的常用方法

2.1.时间戳处理

时间戳属性通常需要分离成多个维度比如年、月、日、小时、分钟、秒钟。但是在很多的应用中,大量的信息是不需要的。

2.2.分解类别属性

一些属性是类别型而不是数值型。例如:由{红,绿、蓝}组成的颜色属性。最常用的方式是把每个类别属性转换成二元属性,即从{0,1}取一个值。因此基本上增加的属性等于相应数目的类别,并且对于你数据集中的每个实例,只有一个是1(其他的为0),这也就是独热(one-hot)编码方式(类似于转换成哑变量)。
如果你不了解这个编码的话,你可能会觉得分解会增加没必要的麻烦(因为编码大量的增加了数据集的维度)。相反,你可能会尝试将类别属性转换成一个标量值,例如颜色属性可能会用{1,2,3}表示{红,绿,蓝}。这里存在两个问题,首先,对于一个数学模型,这意味着某种意义上红色和绿色比和蓝色更“相似”(因为|1-3| > |1-2|)。除非你的类别拥有排序的属性(比如铁路线上的站),这样可能会误导你的模型。然后,可能会导致统计指标(比如均值)无意义,更糟糕的情况是,会误导你的模型。还是颜色的例子,假如你的数据集包含相同数量的红色和蓝色的实例,但是没有绿色的,那么颜色的均值可能还是得到2,也就是绿色的意思。
能够将类别属性转换成一个标量,最有效的场景应该就是只有两个类别的情况。即{0,1}对应{类别1,类别2}。这种情况下,并不需要排序,并且你可以将属性的值理解成属于类别1或类别2的概率。

2.3.分箱/分区

有时候,将数值型属性转换成类别呈现更有意义,同时能使算法减少噪声的干扰,通过将一定范围内的数值划分成确定的块。
举例:我们预测一个人是否拥有某款衣服。
这里年龄是一个确切的因子。其实年龄组是更为相关的因子,所有我们可以将年龄分布划分成1-10,11-18,19-25,26-40等。而且,不是将这些类别分解成2个点,你可以使用标量值,因为相近的年龄组表现出相似的属性。
只有在了解属性的领域知识的基础,确定属性能够划分成简洁的范围时分区才有意义。即所有的数值落入一个分区时能够呈现出共同的特征。在实际应用中,当你不想让你的模型总是尝试区分值之间是否太近时,分区能够避免出现过拟合。例如,如果你所感兴趣的是将一个城市作为整体,这时你可以将所有落入该城市的维度值进行整合成一个整体。分箱也能减小小错误的影响,通过将一个给定值划入到最近的块中。如果划分范围的数量和所有可能值相近,或对你来说准确率很重要的话,此时分箱就不适合了。

2.4.交叉特征

交叉特征算是特征工程中非常重要的方法之一了,交叉特征是一种很独特的方式,它将两个或更多的类别属性组合成一个。当组合的特征要比单个特征更好时,这是一项非常有用的技术。数学上来说,是对类别特征的所有可能值进行交叉相乘。

2.5.特征选择

为了得到更好的模型,使用某些算法自动的选出原始特征的子集。这个过程,你不会构建或修改你拥有的特征,但是会通过修剪特征来达到减少噪声和冗余。
那些和我们解决的问题无关需要被移除的属性,在我们的数据特征中存在了一些特征对于提高模型的准确率比其他更重要的特征,也还有一些特征与其他特征放在一起出现了冗余,特征选择是通过自动选出对于解决问题最有用的特征子集来解决上述问题的。
特征选择算法可能会用到评分方法来排名和选择特征,比如相关性或其他确定特征重要性的方法,更进一步的方法可能需要通过试错,来搜索出特征子集。
还有通过构建辅助模型的方法,逐步回归就是模型构造过程中自动执行特征选择算法的一个实例,还有像Lasso回归和岭回归等正则化方法也被归入到特征选择,通过加入额外的约束或者惩罚项加到已有模型(损失函数)上,以防止过拟合并提高泛化能力。

2.6.特征缩放

有时候,你可能会注意到某些特征比其他特征拥有高得多的跨度值。举个例子,将一个人的收入和他的年龄进行比较,更具体的例子,如某些模型(像岭回归)要求你必须将特征值缩放到相同的范围值内。通过缩放可以避免某些特征比其他特征获得大小非常悬殊的权重值。

2.7.特征提取

特征提取涉及到从原始属性中自动生成一些新的特征集的一系列算法,降维算法就属于这一类。特征提取是一个自动将观测值降维到一个足够建模的小数据集的过程。对于列表数据,可使用的方法包括一些投影方法,像主成分分析和无监督聚类算法。对于图形数据,可能包括一些直线检测和边缘检测,对于不同领域有各自的方法。
特征提取的关键点在于这些方法是自动的(虽然可能需要从简单方法中设计和构建得到),还能够解决不受控制的高维数据的问题。大部分的情况下,是将这些不同类型数据(如图,语言,视频等)存成数字格式来进行模拟观察。
主要内容参考链接: [link]https://www.cnblogs.com/jasonfreak/p/5448385.html

3.特征工程的内容

  1. 异常处理:
    通过箱线图(或 3-Sigma)分析删除异常值;
    BOX-COX 转换(处理有偏分布);
    长尾截断;
  2. 特征归一化/标准化:
    标准化(转换为标准正态分布);
    归一化(抓换到 [0,1] 区间);
    针对幂律分布,可以采用公式:
    在这里插入图片描述
  3. 数据分桶:
    等频分桶;
    等距分桶;
    Best-KS 分桶(类似利用基尼指数进行二分类);
    卡方分桶;
  4. 缺失值处理:
    不处理(针对类似 XGBoost 等树模型);
    删除(缺失数据太多);
    插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
    分箱,缺失值一个箱;
  5. 特征构造:
    构造统计量特征,报告计数、求和、比例、标准差等;
    时间特征,包括相对时间和绝对时间,节假日,双休日等;
    地理信息,包括分箱,分布编码等方法;
    非线性变换,包括 log/ 平方/ 根号等;
    特征组合,特征交叉;
    仁者见仁,智者见智。
  6. 特征筛选:
    过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系数法/卡方检验法/互信息法;
    包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;
    嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;
  7. 降维:
    PCA/ LDA/ ICA;
    特征选择也是一种降维。

3.代码实现

3.1.导入数据

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter

%matplotlib inline

path = 'D:/Anaconda/lib/site-packages/pandas/io/'
Train_data = pd.read_csv(path+'used_car_train_20200313.csv', sep=' ')
Test_data = pd.read_csv(path+'used_car_testA_20200313.csv', sep=' ')
print(Train_data.shape)
print(Test_data.shape)

Train_data.head()

Train_data.columns

Test_data.columns

3.2.删除异常数据

def outliers_proc(data, col_name, scale=3):
    """
    用于清洗异常值,默认用 box_plot(scale=3)进行清洗
    :param data: 接收 pandas 数据格式
    :param col_name: pandas 列名
    :param scale: 尺度
    :return:
    """

    def box_plot_outliers(data_ser, box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收 pandas.Series 数据格式
        :param box_scale: 箱线图尺度,
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser < val_low)
        rule_up = (data_ser > val_up)
        return (rule_low, rule_up), (val_low, val_up)

    data_n = data.copy()
    data_series = data_n[col_name]
    rule, value = box_plot_outliers(data_series, box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
异常处理: 通过箱线图(或 3-Sigma)分析删除异常值; BOX-COX 转换(处理有偏分布); 长尾截断; 特征归一化/标准化: 标准化(转换为标准正态分布); 归一化(抓换到 [0,1] 区间); 针对幂律分布,可以取log 数据分桶: 等频分桶; 等距分桶; Best-KS 分桶(类似利用基尼指数进行二分类); 卡方分桶; 缺失值处理: 不处理(针对类似 XGBoost 等树模型); 删除(缺失数据太多); 插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等; 分箱,缺失值一个箱; 特征构造: 构造统计量特征,报告计数、求和、比例、标准差等; 时间特征,包括相对时间绝对时间,节假日,双休日等; 地理信息,包括分箱,分布编码等方法; 非线性变换,包括 log/ 平方/ 根号等; 特征组合,特征交叉; 仁者见仁,智者见智。 特征筛选 过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系数法/卡方检验法/互信息法; 包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ; 嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归; 降维 PCA/ LDA/ ICA; 特征选择也是一种降维。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值