文章目录
一、向量定义
既有大小,又有方向的一个量
二、基本的运算
1、线性运算
1.1、向量加法运算
1.2、向量减法运算
向量是可以随便平移的!!!
1.3、共线向量
λ
\lambda
λ的正负号,决定向量的方向!
1.4、向量分解
简单的理解为,条条大路通罗马,起点和终点相同,那么,分解就是正确的!!
2、数量积运算
公式变形
这个常用来求:线线角、线面角、面面角
3、建空间坐标系
注意:三个坐标轴要两两垂直。
我们在题目中建系的时候,一定要找两两垂直的三条直线进行建系,否则错误。
三步骤:
1、建系
三条坐标轴两两垂直
2、确定点坐标
基本的几何知识
3、求向量
终点减起点:
A
B
→
=
B
坐标
−
A
坐标
\overrightarrow{AB}=B坐标 - A坐标
AB=B坐标−A坐标
4、向量坐标运算
三、常见题型
1、平行垂直的证明
1.1、情况分类
线线关系,线面关系,面面关系
1.2、空间向量表示线
终点坐标减去起点坐标得到空间向量
用方向向量表示线
1.3、空间向量表示面
法向量表示面
法向量的求法:
这里注意,因为法向量有无数个,所以,三元方程组,只有两个式子
我们可以令x、y、z中任意一个为一个值,在求出另外两个值
1.4、证明平行和垂直的理论依据
1.5、习题
证明线线垂直、线面平行
解析:建系、向量坐标运算
2、求角度
2.1、线线角
2.1、线面角
2.3、面面角
注意,求cosx的时候,需要判断正负号。
2.4、练习
1、求线线角
2、求线面角
3、求面面角
3、求距离
情况分类,其中线线距离不做要求
3.1、点到线的距离-向量到直线的投影
关键点:求出直线的单位向量u
3.2、点到面的距离
关键点,求出面的法向量
3.3、公式总结
3.4、练习
1、点到线的距离
求出ME
的单位向量,然后就是向量坐标运算即可。
2、求点到面的距离
建系
求面的法向量
套公式即可