空间向量及其运算

平面内任意向量 p \boldsymbol{p} p都可以用两个不共线的向量 a \boldsymbol{a} a b \boldsymbol{b} b来表示,这是平面向量的基本定理。类似的我们定义,如果三个向量不共面,那么对空间中的任一向量 p \boldsymbol{p} p,存在有序实数组 { x , y , z } \{x,y,z\} {x,y,z}使得 p = x a + y b + z c \boldsymbol{p}=x\boldsymbol{a}+y\boldsymbol{b}+z\boldsymbol{c} p=xa+yb+zc,我们把向量 { a , b , c } \{\boldsymbol{a},\boldsymbol{b} ,\boldsymbol{c}\} {a,b,c}叫做空间的一个基底(base), a , b , c \boldsymbol{a},\boldsymbol{b} ,\boldsymbol{c} a,b,c叫做基向量(base vector),如果基向量两两垂直,则称这组基向量为正交向量;如果三个基向量两两垂直且为单位向量,则为单位正交向量。

一、空间直角坐标系

以起点同为 O O O三个单位正交向量 i , j , k \boldsymbol{i},\boldsymbol{j} ,\boldsymbol{k} i,j,k所确定的三个轴依次叫做 x x x轴(横轴), y y y轴(纵轴)和 z z z轴(竖轴),我们把 O x y z Oxyz Oxyz [ O ; i , j , k ] [\boldsymbol{O};\boldsymbol{i},\boldsymbol{j},\boldsymbol{k}] [O;i,j,k]四者的组合称为直角坐标系。
1
x x x y y y轴确定的平面叫做 x O y xOy xOy面,同理还有 x O z xOz xOz y O z yOz yOz,三个平面将空间划分为八个部分。如下图:
2
空间中任意一个向量都可以用坐标分解式表示。
3
向量 r = O M → = O P → + P N → + N M → = O P → + O Q → + O R → = x i + y j + z k \boldsymbol{r}=\overrightarrow {OM}=\overrightarrow {OP}+\overrightarrow {PN}+\overrightarrow {NM}=\overrightarrow {OP}+\overrightarrow {OQ}+\overrightarrow {OR}=x\boldsymbol{i}+y\boldsymbol{j}+z\boldsymbol{k} r=OM =OP +PN +NM =OP +OQ +OR =xi+yj+zk,这就建立了有序实数组(坐标) ( x , y , z ) (x,y,z) (x,y,z)、空间中向量 r \boldsymbol{r} r和空间中的点 M M M的联系。这些事实使得向量之间的运算与代数建立起了联系(即用数学计算来解决向量之间的关系)。

二、向量的坐标运算

a = ( a x , a y , a z ) \boldsymbol{a}=(a_x,a_y,a_z) a=(ax,ay,az) b = ( b x , b y , b z ) \boldsymbol{b}=(b_x,b_y,b_z) b=(bx,by,bz),其对应坐标表示
a = a x i + a y j + a z k b = b x i + b y j + b z k \boldsymbol{a}=a_x\boldsymbol{i}+a_y\boldsymbol{j}+a_z\boldsymbol{k}\quad \boldsymbol{b}=b_x\boldsymbol{i}+b_y\boldsymbol{j}+b_z\boldsymbol{k} a=axi+ayj+azkb=bxi+byj+bzk

2.1 向量线性运算
  • 基底形式:
    a + b = ( a x ± b x ) i + ( a y ± b y ) j + ( a z ± b z ) k \boldsymbol{a}+\boldsymbol{b}=(a_x\pm b_x)\boldsymbol{i}+(a_y \pm b_y)\boldsymbol{j}+(a_z\pm b_z)\boldsymbol{k} a+b=(ax±bx)i+(ay±by)j+(az±bz)k
    λ a = λ a x i + λ a y j + λ a z k \lambda \boldsymbol{a}=\lambda a_x\boldsymbol{i}+\lambda a_y\boldsymbol{j}+\lambda a_z\boldsymbol{k} λa=λaxi+λayj+λazk

  • 坐标形式:
    a + b = ( a x ± b x , a y ± b y , a z ± b z ) \boldsymbol{a}+\boldsymbol{b}=(a_x \pm b_x,a_y \pm b_y,a_z\pm b_z) a+b=(ax±bx,ay±by,az±bz)
    λ a = ( λ a x , λ a y , λ a z ) \lambda \boldsymbol{a}=(\lambda a_x,\lambda a_y,\lambda a_z) λa=(λax,λay,λaz)

2.2 向量间的数量积运算

数量积又称点积。设一物体在恒力 F F F作用下沿直线从点 M 1 M_1 M1移动到 M 2 M_2 M2 s s s表示位移 M 1 M 2 → \overrightarrow {M_1M_2} M1M2 ,物理学上告诉我们,力 F F F作的功为:
W = ∣ F ∣ ∣ s ∣ c o s θ W=|F||s|cos\theta W=F∣∣scosθ
其中 θ \theta θ F F F s s s的夹角。
在这里插入图片描述
抽象成数学表达:
a ⋅ b = ∣ a ∣ ∣ b ∣ c o s θ \boldsymbol a \cdot \boldsymbol b=|a||b|cos\theta ab=a∣∣bcosθ

定义可知

  • a ⋅ a = ∣ a ∣ 2 \boldsymbol a \cdot \boldsymbol a=|a|^2 aa=a2
  • 向量 a ⊥ b \boldsymbol a \bot\boldsymbol b ab的充分必要条件是 a ⋅ b = 0 \boldsymbol a\cdot \boldsymbol b=0 ab=0

满足以下性质

  • 交换律 a ⋅ b \boldsymbol a \cdot \boldsymbol b ab= b ⋅ a \boldsymbol b \cdot \boldsymbol a ba
  • 结合律 ( a + b ) ⋅ c = a ⋅ c + b ⋅ c (\boldsymbol a + \boldsymbol b)\cdot\boldsymbol c=\boldsymbol a \cdot \boldsymbol c+\boldsymbol b \cdot \boldsymbol c (a+b)c=ac+bc

PS:向量夹角范围是 [ 0 , π ] [0,\pi] [0,π],所以不存在 a ⋅ b \boldsymbol a \cdot \boldsymbol b ab b ⋅ a \boldsymbol b \cdot \boldsymbol a ba夹角不一样的情况,都是一样的 θ \theta θ。优角是大于180度的角,劣角是小于或等于180度的角,因此向量夹角范围是劣角,在谈论向量夹角的时候,应该找小于或等于180度的角。

坐标形式的数量积
a ⋅ b = ( a x b x + a y b y + a z b z ) (1) \boldsymbol{a}\cdot\boldsymbol{b}=(a_xb_x+a_yb_y+a_zb_z)\tag{1} ab=(axbx+ayby+azbz)(1)

2.3 向量积和混合积
  • 向量积
    a × b = ( a y b z − a z b y , a z b x − a x b z , a x b y − a y b x ) (2) \boldsymbol{a}\times\boldsymbol{b}=(a_yb_z-a_zb_y,a_zb_x-a_xb_z,a_xb_y-a_yb_x)\tag{2} a×b=(aybzazbyazbxaxbz,axbyaybx)(2)
  • 混合积
    略。
2.4 向量属性

设向量坐标为: r = ( x , y , z ) \boldsymbol{r}=(x,y,z) r=(x,y,z),对应向量形式为: r = x i + y j + z k \boldsymbol{r}=x\boldsymbol{i}+y\boldsymbol{j}+z\boldsymbol{k} r=xi+yj+zk

  • 模(大小)
    ∣ r ∣ = x 2 + y 2 + z 2 |\boldsymbol{r}|=x^2+y^2+z^2 r=x2+y2+z2
    设空间中的两点 A A A B B B,其坐标分别为设 a = ( x 1 , y 1 , z 1 ) \boldsymbol{a}=(x_1,y_1,z_1) a=(x1,y1,z1) b = ( x 1 , y 2 , z 3 ) \boldsymbol{b}=(x_1,y_2,z_3) b=(x1,y2,z3)
    根据三角或平行四边形法则, A B → = O B → − O A → = ( x 2 − x 1 , y 2 − y 1 , z 2 − z 1 ) \overrightarrow {AB}=\overrightarrow {OB}-\overrightarrow {OA}=(x_2-x_1,y_2-y_1,z_2-z_1) AB =OB OA =(x2x1y2y1,z2z1),其大小为 ∣ A B ∣ = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 + ( z 2 − z 1 ) 2 |AB|=(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2 AB=(x2x1)2+(y2y1)2+(z2z1)2

  • 方向角和方向余弦
    一个非零向量与三个坐标轴的夹角称为向量在坐标系下的方向角,对应的余弦值为方向余弦。三个方向余弦的平方和等于1。换句话说,一个向量在坐标系上有唯一的比例关系:余弦
    1

2.5 向量间的关系
  • 平行
    当向量 a ≠ 0 \boldsymbol{a} \ne\boldsymbol{0} a=0,向量 a \\ b \boldsymbol{a}\verb|\\|\boldsymbol{b} a\\b相当于 a = λ b \boldsymbol{a}=\lambda\boldsymbol{b} a=λb,坐标表示为:
    ( b x , b y , b z ) = λ ( a x , a y , a z ) (3) (b_x,b_y,b_z)=\lambda(a_x,a_y,a_z)\tag{3} (bx,by,bz)=λ(ax,ay,az)(3)
    或者:
    b x a x = b y a y = b z a z (4) \frac{b_x}{a_x}=\frac{b_y}{a_y}=\frac{b_z}{a_z}\tag{4} axbx=ayby=azbz(4)
    如果向量 a \boldsymbol{a} a的坐标有一个为零,那么将分式去掉并添加对应 b \boldsymbol{b} b坐标等于零约束。

- 投影(非常重要)
在这里插入图片描述
给定一个点 O O O和一个单位向量 e \boldsymbol{e} e可以确定一个延伸至无穷远的数轴 u \boldsymbol u u,在这个空间上任取一个向量记为 O M → = r \overrightarrow{OM}=\boldsymbol{r} OM =r(平移至共起点),过待投影的向量 r \boldsymbol r r终点作一个垂直于数轴 u u u的平面,相交于 M ′ M' M(M在数轴 u u u点投影),向量 O M ′ → \overrightarrow{OM'} OM 叫做向量 r \boldsymbol{r} r u \boldsymbol u u轴上的分向量。

任何一个在数轴 u u u上的向量都可以在用一个数 λ \lambda λ和同方向的单位向量 e e e表示,如下:
O M ′ → = λ e \overrightarrow{OM'}=\lambda{\boldsymbol{e}} OM =λe
这个数在数学上被称为向量 r \boldsymbol r r u \boldsymbol u u上的向量投影,记作 P r j u r Prj_u\boldsymbol{r} Prjur ( r ) u (\boldsymbol{r})_u (r)u

按照投影的观点,直角坐标系上的一个向量 a \boldsymbol a a在直角坐标系 O x y z Oxyz Oxyz上的坐标为( a x , b x , c x a_x,b_x,c_x ax,bx,cx)就是向量 a \boldsymbol a a在三个坐标轴上的投影,也就是:
a x = P r j x a , a y = P r j y a , a z = P r j z a a_x=Prj_x\boldsymbol a,a_y=Prj_y\boldsymbol a,a_z=Prj_z\boldsymbol a ax=Prjxaay=Prjyaaz=Prjza
或者你更习惯这种表示方式:
a x = ( a ) x , a y = ( a ) y , a z = ( a ) z a_x=(\boldsymbol a)_x,a_y=(\boldsymbol a)_y,a_z=(\boldsymbol a)_z ax=(a)xay=(a)yaz=(a)z

投影有以下性质:

  • 性质1 ( a ) u = ∣ a ∣ c o s φ (\boldsymbol a)_u=|a|cos\varphi (a)u=acosφ,其中 φ \varphi φ是向量 a \boldsymbol a a u \boldsymbol u u轴的夹角;
  • 性质2 ( a + b ) u = ( a ) u + ( b ) u (\boldsymbol a+\boldsymbol b)_u=(\boldsymbol a)_u+(\boldsymbol b)_u (a+b)u=(a)u+(b)u;
  • 性质3 ( λ a ) u = λ ( a ) u (\lambda \boldsymbol a)_u=\lambda (a)_u (λa)u=λ(a)u
  • 1
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 空间解析结合与向量代数是线性代数的基础内容,主要研究线性空间的性质和向量运算规律。在空间解析结合中,我们将实数域上的向量或元素按照一定规则进行加法和乘法运算,得到一个线性空间向量代数是对线性空间中的向量进行代数运算,包括向量的加法、数乘、内积、数乘等。 通过空间解析结合与向量代数,我们可以更直观地理解和描述线性空间以及其中的向量运算。线性空间中的向量可以用坐标表示,可以使用坐标运算进行向量相加、减法、数乘等运算,这样简化了向量的计算过程,使得问题更加直观易懂。 向量代数中的一些重要概念包括线性组合、线性无关、基、维数、子空间等,这些概念对于理解线性空间的结构和性质至关重要。线性代数中的一些重要定理和推论也可以通过空间解析结合与向量代数的方法进行证明,并且得到更直接的几何解释。 在应用方面,空间解析结合与向量代数是多门学科中的重要工具,如物理学中的向量力学、电磁学中的矢量场、计算机图形学中的几何变换等都离不开向量运算和坐标表示。此外,在实际问题中,也经常需要将问题抽象成线性方程组或矩阵方程组,通过向量代数的方法求解,这样不仅可以简化问题,还可以得到更一般的解决方案。 总之,空间解析结合与向量代数是线性代数中重要的基础内容,既可以帮助我们更深入地理解线性空间的结构和性质,也可以在实际问题中提供有力的数学工具。希望能够通过下载相关的pdf文献,进一步深入学习和应用这些知识。 ### 回答2: 空间解析结合与向量代数是线性代数的重要内容之一。在空间解析结合中,我们研究的是空间中的点、直线、面及其相交关系等问题。通过运用向量代数的知识,我们可以更方便地处理这些问题,并得到更加简洁的结果。 在向量代数中,我们可以用向量来表示空间中的点、直线、面等几何对象。向量运算包括加法、减法、数量乘法和点乘。通过向量的加法和减法,我们可以得到空间中两点之间的位移向量;通过数量乘法,我们可以得到位移向量的倍数或相反向量;通过点乘,我们可以得到向量的模长、两向量之间的夹角以及两向量是否垂直等信息。 空间解析结合与向量代数的关系体现在以下几个方面: 1. 使用向量表示空间中的几何对象:通过向量的线性组合,我们可以表示空间中的直线、平面,甚至是更高维度的几何对象。这样做不仅简化了表达形式,还便于进行运算和推导。 2. 运用向量运算求解几何问题:通过向量代数的运算,我们可以求解空间中的几何问题。比如,在求解两线段是否相交时,我们可以将线段的两个端点表示为向量,然后通过向量的线性组合和点乘等运算处理得到结果。 3. 应用向量代数的性质简化问题表达:向量代数具有一些良好的性质,如分配律、结合律等。运用这些性质,我们可以简化问题的表达形式,更加清晰地描述问题。 综上所述,空间解析结合与向量代数是相辅相成的,在处理空间几何问题时,我们可以结合使用它们,通过向量的加法、点乘等运算,得到简单而又准确的结果。 ### 回答3: 空间解析结合是指将几何问题转化为向量代数问题进行求解的方法。通过使用向量向量运算,我们可以利用向量的方向和大小描述几何体的特征,从而更方便地进行计算和分析。 在空间解析结合中,我们使用向量的坐标表示法来表示空间中的点、直线、平面和其他几何体。例如,对于一个点P,可以使用它的坐标表示为P(x, y, z),其中x、y、z分别表示点P在x轴、y轴和z轴上的坐标。 通过向量代数,我们可以进行向量的加法、减法、数乘和点乘等运算。这些运算可以帮助我们求解空间中的距离、夹角、平面的方程等几何问题。例如,通过向量的点乘可以求解两条直线的夹角,通过向量的叉乘可以求解平面的法向量。 此外,向量代数还可以用于解决空间中的线性方程组和矩阵运算问题。通过将线性方程组转化为矩阵形式,我们可以使用向量代数的方法求解未知数。而矩阵的乘法、转置和逆等运算也可以帮助我们简化空间解析问题的计算过程。 通过空间解析结合与向量代数,我们可以将几何问题转化为向量运算问题,利用向量的特性进行解答。这种方法不仅能够简化计算过程,还能够提高问题的求解效率。因此,空间解析结合与向量代数的应用具有重要的理论和实际意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值