凸优化学习-(五)常见集合

凸优化学习

今天主要是一些常见的集合。

学习笔记

一、 R n R^n Rn空间

是仿射集、凸集、凸锥。

R n R^n Rn空间的子空间

是仿射集、凸集、凸锥。

子空间的定义

设W为数域F上的n维线性空间V的子集合(即W∈V),若W中的元素满足
(1)若任意的α,β∈W,则α+β∈W;(对加法是封闭的)
(2)若任意的α∈W,λ∈F,则λα∈W。(对数乘也是封闭的)
(3)子空间中必须包含“0向量”

二、任意直线

是仿射集、凸集。
直线过原点时也是凸锥(本质上已经变成了空间)。

三、任意线段

是凸集。
线段为点时也是仿射集或凸锥(线段为原点)。

四、射线

{ x 0 + θ v ∣ θ ≥ 0 }      x 0 ∈ R n    θ ∈ R    v ∈ R n \lbrace x_0+\theta v\mid \theta \ge0\rbrace\ \ \ \ x_0 \in R^n \ \ \theta\in R \ \ v\in R^n {x0+θvθ0}    x0Rn  θR  vRn
一定是凸集。
v v v为0时也是仿射集。
x 0 x_0 x0为零时也是凸锥。

五、超平面与半空间

超平面与半空间为两个相互关联的定义。
超平面:
{ x ∣ a T x = b }      x , a ∈ R n    b ∈ R    a ≠ 0 \lbrace x\mid a^Tx=b\rbrace\ \ \ \ x,a\in R^n\ \ b\in R\ \ a\ne0 {xaTx=b}    x,aRn  bR  a=0
半空间:
由上述超平面在同一空间内划分出的两个部分称为半空间: a T x ≥ b a T x ≤ b a^Tx \ge b\\ a^Tx \le b aTxbaTxb
超平面:
是仿射集、凸集,过原点时也是凸锥。
半空间:
是凸集。 b b b 0 0 0时也是仿射集、凸锥。
例:
二维平面的情况:
在这里插入图片描述

六、球和椭球

1、球

形如: B ( x c , r ) = { x ∣ ∥ x − x c ∥ 2 ≤ r = { x ∣ ( x − x c ) T ( x − x c ) ≤ r \begin{aligned} B(x_c,r) &=\lbrace x\mid \left \| x-x_c\right \|_2 \le r\\ &=\lbrace x \mid \sqrt{(x-x_c)^T(x-x_c)}\le r\\ \end{aligned} B(xc,r)={xxxc2r={x(xxc)T(xxc) r
其中 x c x_c xc为球心, r r r为半径,就是一个距离小于半径的定义。
球是凸集,当 r r r 0 0 0时也是仿射集、凸锥。

2、椭球

形如:
ε ( x c , P ) = { x ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 }      x c ∈ R n    P ∈ S + + n \varepsilon(x_c,\textbf{P})=\lbrace x \mid(x-x_c)^T\textbf{P}^{-1}(x-x_c)\le1\rbrace\ \ \ \ x_c \in R^n \ \ \textbf{P}\in\textbf{S}^n_{++} ε(xc,P)={x(xxc)TP1(xxc)1}    xcRn  PS++n
x c x_c xc是球心,矩阵 P \textbf P P是描述椭球半轴长度的矩阵。
椭球是凸集,当 x c x_c xc在原点、 P \textbf P P为零矩阵时也为仿射集、凸锥。

个人思考

常见集合的判断建议不要用定义,靠想象比较好,侧重于找反例,看两点线段、直线是否在集合内。

纸质笔记

在这里插入图片描述

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值