引言:
PyTorch是一个广泛应用于深度学习和人工智能领域的开源框架。它提供了丰富的工具和库,用于构建和训练神经网络模型。除了在监督学习任务中表现出色,PyTorch也可以用于强化学习(Reinforcement Learning)任务。本文将深入探讨PyTorch的基础知识,并通过示例代码演示如何在PyTorch中实现强化学习算法。
- 强化学习简介
强化学习是一种机器学习方法,用于解决智能体(Agent)在环境中学习和做决策的问题。智能体通过与环境的交互,通过尝试不同的动作来最大化累积奖励。强化学习的核心是构建一个智能体和环境之间的交互模型,智能体通过观察环境状态并选择合适的动作,从而实现最优策略的学习。
- PyTorch基础知识
2.1 张量(Tensors)
PyTorch中的张量是一种多维数组,类似于Numpy中的数组。张量可以存储和处理大量的数值数据,并支持各种数学运算。我们可以使用torch.Tensor
类创建张量,例如:
import torch
# 创建一个2x3的浮点型张量
x