Sparse Voxel DAGs

本文介绍了Siggraph2013上的一项新技术——高分辨率稀疏体素有向无环图(SVD)。该技术是对SVO算法的一种改进,通过减少共享节点的冗余存储并利用DAG结构直接连接节点,从而实现更高效的存储和更快的模型遍历速度。
摘要由CSDN通过智能技术生成

Siggraph 2013上面的一篇新文:High Resolution Sparse Voxel DAGs,主要介绍了一种基于图的稀疏体素空间存储结构。

其主要是对SVO做了进一步的改进,减少里边的共享结点的冗余存储,将其用directed acyclic graph(DAG)直接连接,如下图所示:


其创建方法也是基于SVO来进行自底向上的逐层合并(自顶向下效率较低),其中有用到一些parallel sorting等优化手段来加速操作。

使用SVD存储的体素结构可以比SVO节省较多的空间,这样一来就可以在相同的存储空间上面使用更细精度的体素细节来表述模型;同时,基于SVD的体素结构遍历并没有相对于SVO有过多性能下降,部分场合会有提升(作者用Ray tracing来进行了验证)。不过感觉其还是有些应用限制:

  1. SVD的创建需要对SVO中的结点进行merge操作,这样一来,一些结点包含信息较多的SVO进行SVD结点合并的效率可能并不会十分理想;
  2. SVD算法以SVO为基础,并且需要相对明确的结构信息,如此,一些具体应用场合下的SVO算法并不太适宜生成SVD(比如前面博文中提到的存储于3D Texture中的SVO,这里的生成效率应该会是蛮大的问题);
这些只是自己的想法,具体的情况还是需要一些实践来进行更多的验证。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值