【学习笔记】拉格朗日插值法

已知这样一个方程。
{ f ( 1 ) = y 1 f ( 2 ) = y 2 f ( 3 ) = y 3 ⋯ f ( n ) = y n \left \{ \begin{array}{c} f(1)= \large y_1 \\ f(2)= \large y_2 \\ f(3)= \large y_3 \\ \cdots \\ f(n)= \large y_n \end{array} \right. f(1)=y1f(2)=y2f(3)=y3f(n)=yn
f ( x ) f(x) f(x)的式子。


首先由小奥知识知道,上面的这个方程可唯一确定一个n次多项式。然后就可以用高斯消元来搞了。
然而时间复杂度是 O ( n 3 ) O(n^3) O(n3)的,在这里你应该过不去(小常数选手、暴力碾标算选手等神仙可以在下方教♂导本萌新交流)。
于是我们开始介绍拉格朗日插值法。


拉格朗日插值法可以将上面的那个方程组(称作点值表达)转化为系数表达(即多项式)。
那么这个插值的过程是怎样的呢?
我们不妨重新定义 f ( x ) f(x) f(x)
f ( x ) = ∑ i = 1 n l i ( x i ) y i 其 中 l i ( x ) = ∏ j = 1 & j ≠ i n x − x j x i − x j f(x)=\sum_{i=1}^nl_i(x_i)y_i \\ 其中l_i(x)=\prod_{j=1 \& j \neq i}^n\frac{x-x_j}{x_i-x_j} f(x)=i=1nli(xi)yili(x)=j=1&j=inxixjxxj
发现将 y i , i ∈ [ 1 , n ] y_i,i \in [1,n] yi,i[1,n]代入这个式子都成立。
这就完了?


好像真完了
那。。。接下来就贴代码吧qwq

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mn = 2005, mod = 998244353;
ll a[mn], x[mn], y[mn];
inline ll ksm(ll a, int b)
{
    if(a < 0) a += mod;
    ll ret = 1;
    while(b)
    {
        if(b & 1)
            (ret *= a) %= mod;
        (a *= a) %= mod, b >>= 1;
    }
    return ret;
}
int main()
{
    int n, k;
    cin >> n >> k;
    for(int i = 1; i <= n; i++)
        cin >> x[i] >> y[i];
    ll ans = 0;
    for(int i = 1; i <= n; i++)
    {
        ll tmp = y[i];
        for(int j = 1; j <= n; j++)
            if(i != j)
                (tmp *= (k - x[j] + mod) % mod * ksm(x[i] - x[j], mod - 2) % mod) %= mod;
        (ans += tmp) %= mod;
    }
    printf("%lld\n", ans);
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值