Adaptive Two-Stage Filter for De-snowing LiDAR Point Clouds(DNNOR)

Adaptive Two-Stage Filter for De-snowing LiDAR Point Clouds

结论

CADCD dataset 验证了该算法的有效性-强度滤波与密度滤波合并的有效性:TP rate above 90%,FN rate are relatively smaller in all condition of weather。

摘要

该方法精度达到98% 处理速度达到 1.42帧每秒

引言

背景资料:

有很多公司正在为开发自动驾驶汽车创造巨大的资源。…激光雷达的效果会受到极端天气条件的严重限制,随机出现在点云中的雪,挡住了车辆的视线。此外,它在20米范围内的点云上显得密集,密度随着距离的增加而降低。

文献回顾:

比较少的研究能够解决这个问题,大部分的研究主要集中在降雪去噪。

指出问题:

滤波器需要适应天气的变化导致的雪点数量变化。

研究活动/目的:

本文分析了天气的影响,提出了自适应滤波器,以提高滤波器的精度。

研究工作的价值:

1、我们提出了两级自适应滤波系统,该系统在处理时间和精度上都比现有的滤波器有更高的性能。
2、提出了动态邻域异常值去除方法,提高了去除精度,降低了误去除目标点云的概率。
3、我们基于加拿大恶劣驾驶条件数据集,在降雪天气下使用手工标记的地面真相来评估我们方法的准确性。

本论文的组织结构

相关研究

ROR,SOR,DROR
WeatherNet LIOR

主要针对LIOR算法存在的问题:

然而,在某些条件下,LIOR可能会受到不利影响。
在各条件下优化LIOR滤波器可以降低假阳性率特征。过滤器可以跳过对象点
我们提出的方法将克服它们的局限性。

提出的滤波器

自适应滤波是一种基于不同强度与密度相结合的算法。
系统结构
点云强度图
可以看到雪点的强度是最小的。
由LIOR得到强度阈值公式
在这里插入图片描述
由于强度重叠的问题,将阈值分为两个级别
在这里插入图片描述
按阈值划分的等级
在这里插入图片描述
按阈值分类后可以清晰看到有部分地面点,障碍物点,雪点的强度是相近的,它们集中在Medium中。
分级图
地面点,障碍物点的密度明显高于雪点。将那些与雪点强度相似的有效点分割出去。
密度图
用聚类的方法将离群点剔除。
算法伪码图
这篇算法的改进点就是实时性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值