matlab笔记

学习笔记

PCA的matlab实现

PCA:通过特征的线性组合来实现降维的主成分分析方法。

【cof ,score,latent】=princomp(x);

X为原始样本组成的nxd的矩阵,n为样本特征向量个数,d为样本特征向量维数;
cof为主成分分量,即变换空间中的基向量,也是样本协方差矩阵的本征向量;
score为主成分,即X的低维表示,X中的数据在主成分分量上的投影;
latent为一个包含着样本协方差矩阵本征值的向量。

快速PCA及其MATLAB实现

【pcaA V】=fastPCA(a,k);
a为原始样本矩阵,k为需要降到的维数,pcaA为降维后的K维样本特征向量组成的矩阵,V为主成分分量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值