学习笔记
PCA的matlab实现
PCA:通过特征的线性组合来实现降维的主成分分析方法。
【cof ,score,latent】=princomp(x);
X为原始样本组成的nxd的矩阵,n为样本特征向量个数,d为样本特征向量维数;
cof为主成分分量,即变换空间中的基向量,也是样本协方差矩阵的本征向量;
score为主成分,即X的低维表示,X中的数据在主成分分量上的投影;
latent为一个包含着样本协方差矩阵本征值的向量。
快速PCA及其MATLAB实现
【pcaA V】=fastPCA(a,k);
a为原始样本矩阵,k为需要降到的维数,pcaA为降维后的K维样本特征向量组成的矩阵,V为主成分分量。