免费馅饼
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不 掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只 能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的 范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
-
输入
- 输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。 输出
-
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
样例输入
-
6 5 1 4 1 6 1 7 2 7 2 8 3 0
样例输出
-
4
//注意边界的考虑和起始点的考虑,(上一次写就是因为没考虑起始点的问题)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[12][100000+10];
int main()
{
int n;
while(~scanf("%d",&n)&&n)
{
int ans=0;
int x,t,T=0;
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++)
{
scanf("%d%d",&x,&t);
dp[x][t]+=1;
if(t>T)
T=t;
if(t==1&&(x>6 || x<4))
{
dp[x][t]=0;
}
}
int i,j;
for(j=2; j<=T; j++)
{
for(i=0; i<=10; i++)
{
if(i==0)
{
dp[i][j]+=max(dp[i][j-1],dp[i+1][j-1]);
}
else
{
dp[i][j]+=max(dp[i][j-1],max(dp[i-1][j-1],dp[i+1][j-1]));
}
}
}
for(int i=0; i<=10; i++)
{
ans=max(dp[i][T],ans);
}
printf("%d\n",ans);
}
return 0;
}
//这道题眼不眼熟,还记得数字三角形吗!
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[12][100000+10];
int main()
{
int n;
while(~scanf("%d",&n)&&n)
{
int ans=0;
int x,t,T=0;
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++)
{
scanf("%d%d",&x,&t);
dp[x][t]+=1;
if(t>T)
T=t;
}
int i,j;
for(j=T-1; j>=0; j--)
{
for(i=0; i<=10; i++)
{
if(i==0)
{
dp[i][j]+=max(dp[i][j+1],dp[i+1][j+1]);
}
else
{
dp[i][j]+=max(dp[i][j+1],max(dp[i-1][j+1],dp[i+1][j+1]));
}
}
}
printf("%d\n",dp[5][0]);
}
return 0;
} /ac