本文是对《A Survey on Network Embedding》一文的浅显翻译与理解,原文章已上传至个人资源,如有侵权即刻删除。
朋友们,我们在github创建了一个图学习笔记库,总结了相关文章的论文、代码和我个人的中文笔记,能够帮助大家更加便捷地找到对应论文,欢迎star~
Chinese-Reading-Notes-of-Graph-Learning
更多相关文章,请移步:文献阅读总结:网络表示学习/图学习
Title
《A Survey on Network Embedding》(2017)
——AAAI
Author: Peng Cui
个人总结
该文章是对网络嵌入算法的详细综述。
1.介绍了传统网络表示的弊端:
(1)计算复杂度高;(2)并行性低;(3)不适用机器学习模型;
2.对算法和模型进行了分类:
算法可分为三类:
(1)保留结构和属性的嵌入;(2)边信息的嵌入;(3)保留高级信息的嵌入;
模型可分为三类:
(1)矩阵分解;(2)随机游走;(3)深度神经网络;
3.对网络嵌入和图嵌入进行了比较。
4.保留结构和属性的嵌入:
(1)保留结构的嵌入:
a.邻域结构和高阶节点相似度:DeepWalk、Node2vec、LINE、GraRep等;
b.网络社群:MNMF、SDNE、GEM-D等;
(2)保留属性的嵌入:HOPE、SiNE等;
5.边信息的嵌入:
(1)节点语境的嵌入:MMDW、RTM、TADW、LANE等;
(2)异质信息网络嵌入;
6.保留高级信息的嵌入:
(1)信息扩散;(2)异常检测;(3)网络校准;
7.实践中的网络嵌入:
(1)现实世界数据集:
a.社交网络:BLOGCATALOG、FLICKR、YOUTUBE、Twitter等;
b.引文网络:DBLP、Cora、Citeseer、ArXiv等;
c.语言网络:Wikipedia等;
d.生物信息网络:PPI等;
(2)现实应用及评估标准:
a.节点分类:Micro-F1、Macro-F1等;
b.链路预测:precision@、Mean Average Precision(MAP)等;
c.节点聚类:Accuracy(AC)、normalized mutual information(NMI)等;
d.网络可视化;
8.未来研究方向:
(1)更复杂的结构和属性;(2)边信息的效用;(3)更多高级信息和任务;(4)动态网络嵌入;(5)更多嵌入空间;