本文是对《EvolveGCN:Evolving Graph Convolutional Networks for Dynamic Graph》一文的浅显翻译与理解,如有侵权即刻删除。
朋友们,我们在github创建了一个图学习笔记库,总结了相关文章的论文、代码和我个人的中文笔记,能够帮助大家更加便捷地找到对应论文,欢迎star~
Chinese-Reading-Notes-of-Graph-Learning
更多相关文章,请移步:文献阅读总结:网络表示学习/图学习
Title
《EvolveGCN:Evolving Graph Convolutional Networks for Dynamic Graph》
——AAAI2020
Author: Aldo Pareja
总结
1 GCN
文章利用GCN学习节点表征,并用GRU或LSTM学习GCN中的参数,即权重矩阵。这样其权重矩阵就能够随着时间不断演化,而最终需要学习的参数,只是GRU或LSTM中用来演化权重矩阵的参数。提出的EvolveGCN模型示意图如下:
即在每个时刻,都用RNN模型演化GCN中的参数,而GCN最终的计算公式如下: