文献阅读(25)AAAI2020-EvolveGCN:Evolving Graph Convolutional Networks for Dynamic Graph

本文介绍EvolveGCN模型,该模型利用图卷积网络(GCN)学习节点表示,并通过门控循环单元(GRU)或长短期记忆(LSTM)网络使权重矩阵随时间演化。适用于动态图场景。

本文是对《EvolveGCN:Evolving Graph Convolutional Networks for Dynamic Graph》一文的浅显翻译与理解,如有侵权即刻删除。

朋友们,我们在github创建了一个图学习笔记库,总结了相关文章的论文、代码和我个人的中文笔记,能够帮助大家更加便捷地找到对应论文,欢迎star~

Chinese-Reading-Notes-of-Graph-Learning

更多相关文章,请移步:文献阅读总结:网络表示学习/图学习

Title

《EvolveGCN:Evolving Graph Convolutional Networks for Dynamic Graph》

——AAAI2020

Author: Aldo Pareja

总结

1 GCN

文章利用GCN学习节点表征,并用GRU或LSTM学习GCN中的参数,即权重矩阵。这样其权重矩阵就能够随着时间不断演化,而最终需要学习的参数,只是GRU或LSTM中用来演化权重矩阵的参数。提出的EvolveGCN模型示意图如下:

在这里插入图片描述
即在每个时刻,都用RNN模型演化GCN中的参数,而GCN最终的计算公式如下:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值