文献阅读(54)arXiv2021-Graph Self-Supervised Learning-A Survey

本文是对《Graph Self-Supervised Learning: A Survey》一文的浅显翻译与理解,如有侵权即刻删除。

朋友们,我们在github创建了一个图学习笔记库,总结了相关文章的论文、代码和我个人的中文笔记,能够帮助大家更加便捷地找到对应论文,欢迎star~

Chinese-Reading-Notes-of-Graph-Learning

更多相关文章,请移步:文献阅读总结:网络表示学习/图学习

Title

《Graph Self-Supervised Learning: A Survey》

——arXiv2021

Author: Yixin Liu

总结

文章对图上的自监督学习方法进行做出综述,从模型框架、训练方法、任务目标三部分对图自监督学习方法进行分类,此外还介绍了实际应用场景,适用数据集和未来发展方向。

自监督学习是一种新兴的学习理念,已经广泛应用于自然语言处理和计算机视觉等领域,其目的在于,不再依赖人为赋予的标签,而是通过数据本身来为数据自动地设置标签或进行数据增强,让数据在训练过程中以自身变体为监督信号。自监督学习在各领域的应用如下图所示:

在这里插入图片描述

对该文做概括图如下:

在这里插入图片描述

接下来,将分为如图所示的几个部分,主要围绕针对模型框架的分类,对具体每一部分进行介绍。

1 基于模型框架的分类

1.1 基于生成的方法

基于生成的方法致力于重构输入数据,并将输入数据作为其监督信号。生成手段包括特征生成和结构生成,有示例如下:

在这里插入图片描述

1.1.1 特征生成

特征生成主要通过对原始图进行扰动来覆盖特征信息,这些特征信息包括节点中心度数、附加属性等,如上图中的图补全。

1.1.2 结构生成

结构生成通过对原始图进行部分边的掩码,训练模型对图的拓扑结构进行重构,如上图中的去噪链路重建。

1.2 基于辅助属性的方法

该类方法往往通过从节点级、边级和图级属性中获取监督信号,而这些属性可以从图中生成,相当于自适应地为数据添加新的标签,该类方法按照属性是离散或连续,可分为分类方法与回归方法,如下图所示:

在这里插入图片描述

1.2.1 辅助属性分类

分类方法意味着辅助属性是离散的,比如不同的标签值,可进行多类别地划分,图中的节点可以在训练前分配各自属性,在训练过程中约束预测值与事先分配的属性值尽可能一致。这些属性往往包括所属聚类、某一节点的邻居阶数等,又可进一步进行划分:

1.2.1.1 基于聚类的分类方法

该类方法会将图中的节点按照聚类方法分为多个类或社区,那么不同类的节点就可以附加为不同标签。

1.2.1.2 基于配对关系的分类方法

该类方法不再关注于单个节点,而是每个节点对,即节点间的边或交互。按照交互时间的先后或邻居阶数的不同,就可以分配为不同的标签,同样在训练中约束预测的标签与事先分配标签一致。

1.2.2 辅助属性回归

回归方法意味着辅助属性是连续的,比如节点间度数是不同的,但如果进行分类的话,每个度数值都会被分为一类,起不到分类聚合的效果,因此采用回归的方法,即拟合出曲线将这些值分配在曲线附近。这些属性还包括节点到每个聚类中心的距离,节点间的相似性等。

1.3 基于对比的方法

该类方法建立在互信息最大化(mutual information maximization)的思想上,通过预测两个增强实例间的一致性进行训练学习。换言之,即通过对原始数据进行数据增强生成新的视图或实例,并约束这些实例尽可能一致。

1.3.1 图增强

该类方法关注于对图本身进行数据增强,按照增强的方向不同可进一步分类,如下图所示:

在这里插入图片描述

1.3.1.1 属性增强

该类方法往往是用来对节点级的属性特征进行视图增强,包括节点特征掩码NFM和节点特征重组NFS等。

1.3.1.2 结构增强

该类方法通过修改图的拓扑结构进行数据增强,包括边修改EM和图扩散GD等。

1.3.1.3 混合式数据增强

该类方法往往结合节点属性及图的拓扑结构来共同构建新视图,如子图采样SS等。

1.3.2 图对比学习

图对比学习的方法,旨在最大化具有相似语义信息的实例之间的MI,因此可以构建各类任务来增强该类信息的监督信号。按照对比尺度的不同,可以分为两类,如下图所示:

在这里插入图片描述

1.3.2.1 同尺度对比

该类方法会在同尺度下生成不同的视图,按照节点级和图级的尺度不同,可分为两类。

1.3.2.1.1 节点级同尺度对比

该类方法认为,具有相似环境信息的节点应当具有相似的表征,网络表征学习的经典方法通常被分到该类中。

1.3.2.1.2 图级同尺度对比

该类方法往往研究的是全图的表征学习。

1.3.2.2 跨尺度对比

该类方法会进行跨越节点和图尺度的对比,可进一步分为两类。

1.3.2.2.1 补丁-全局跨尺度对比

该类方法将节点表征和图表征进行对比,使得不同视图下局部和全局间的互信息最大化。

1.3.2.2.2 环境-全局跨尺度对比

该类方法学习关于节点上下文环境的表征和关于全图的表征,并进行对比,同样是约束互信息最大化。

1.3.3 互信息最大化

基于对比学习的方法,往往都依赖于互信息MI最大化这一概念,文章在此进行了解释。其根本思想在于,使得偏好、特征或行为接近的实例(正样本)的表征向量尽可能接近,而上述属性相悖的实例(负样本)的表征向量尽可能偏离。文章给出了计算MI的几种常见形式:Jensen-Shannon Estimator、Noise-Contrastive Estimator、Triplet Loss、BYOL Loss、Barlow Twins Loss,在此不再详细介绍。

1.4 混合式方法

混合式方法往往将上述几类方法进行结合,通过构建多个任务目标来更好地利用各类监督信号的优势,其损失函数往往是两个或多个自监督目标的加权和。该类方法可分为:结合不同基于生成的方法、结合生成和对比任务的方法、结合多种基于对比的方法、结合不同基于辅助属性的方法。

2 其他

2.1 基于训练结构的方法分类

图上的自监督学习方法又可按照训练结构进行细分:预训练和微调方法、共同学习方法、无监督表征学习方法。

2.2 基于实验任务的方法分类

按照实验任务目标的不同,可在不同级别进行分类。

2.2.1 节点级任务

节点级任务包括节点回归和节点聚类。

2.2.2 边级任务

边级任务包括边分类和链路预测。

2.2.3 图级任务

图级任务包括图分类和图回归。

2.3 现实应用场景

图上的自监督学习方法有着如下的应用场景:推荐系统、异常检测、化学方面(如分子化合物生成、靶向用药)等。

2.4 数据集

这些方法往往用于如下的数据集:引文网络、购物网络、社交网络、生物化学网络等。

2.5 未来研究方向

未来研究方向包括:构建图自监督学习的理论基础、图自监督学习的可解释性与鲁棒性、预设任务用于复杂图或超图、对图对比学习的扩展、多预设任务的学习、实际应用范围的拓宽。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: ARXIV GR-QC 数据集是一个存放有关引力理论和量子计算的学术论文的数据集,它来自 ArXiv 学术论文库。要下载这个数据集,您可以在 ArXiv 网站上进行搜索,并使用相应的筛选器将结果限制在 GR-QC 分类下。您可以通过点击论文标题并使用浏览器的“另存为”功能来下载每篇论文。 此外,您还可以使用 ArXiv API 来访问和下载数据集。API 提供了一组程序接口,您可以使用它来搜索论文、获取论文摘要和元数据等。有关如何使用 ArXiv API 的更多信息,请参阅 ArXiv API 文档。 ### 回答2: ARXIV GR-QC 数据集是一个用于研究和分析的科学论文数据库。该数据库主要收集了与广义相对论(GR)和量子力学(QC)相关的论文。要下载这个数据集,首先需要访问 ARXIV GR-QC 数据集的官方网站。 在该网站上,可以找到数据集的下载链接或相关的信息。点击相应的链接,可以选择下载整个数据集或特定的部分。下载的文件通常是以压缩包的形式提供,需要用解压软件将其解压后得到数据文件。 一旦下载了数据集,就可以开始使用它进行分析和研究。数据集中包含了很多科学论文的元数据(如标题、作者、摘要等),并且可能还包含全文或相关的研究数据。可以使用各种数据分析工具和技术来探索和提取数据集中的信息。 ARXIV GR-QC 数据集的下载对于科研人员、学生和其他对广义相对论和量子力学感兴趣的人非常有用。这个数据集可以帮助研究者更好地了解最新的研究进展,探索新的研究领域,并且可以为他们的研究提供重要的参考和支持。 总的来说,ARXIV GR-QC 数据集是一个重要的资源,可以通过官方网站下载。通过使用该数据集,研究者可以更加深入地了解广义相对论和量子力学领域的最新动态,并进行进一步的分析和研究。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值