统计学补充概念04-最大似然估计

概念

最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种统计方法,用于估计模型的参数,使得给定观测数据的似然函数达到最大。在最大似然估计中,我们寻找能够最大化观测数据的可能性(似然)的参数值。

假设我们有一组观测数据 x1, x2, …, xn,来自某个概率分布,且这个概率分布具有一些未知的参数 θ 需要估计。似然函数 L(θ) 表示在给定参数 θ 下观测数据出现的概率。我们的目标是找到能够最大化似然函数的参数值 θ,即:

θ^ = argmax L(θ)

通常,为了方便计算,我们计算对数似然函数 LL(θ) = log(L(θ)),然后寻找能够最大化对数似然函数的参数值。

具体步骤如下:

1确定参数化的概率分布以及参数的取值范围。

2编写似然函数或对数似然函数,根据数据和参数计算观测数据出现的概率。

3最大化对数似然函数,可以使用数值优化方法(如梯度下降、牛顿法等)来找到最优参数值。

4得到估计的参数值,它们是使得观测数据出现概率最大的参数。

代码实现

import numpy as np
from scipy.stats import norm
from scipy.optimize import minimize

# 生成一组模拟观测数据
np.random.seed(42)
data = np.random.normal(5, 2, 100)

# 定义对数似然函数
def log_likelihood(params, data):
    mu, sigma = params
    return -np.sum(norm.logpdf(data, mu, sigma))

# 初始参数值
initial_params = [0, 1]

# 最大化对数似然函数
result = minimize(lambda params: log_likelihood(params, data), initial_params)

# 输出估计的参数值
estimated_mu, estimated_sigma = result.x
print("Estimated mu:", estimated_mu)
print("Estimated sigma:", estimated_sigma)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值