概念
层次聚类是一种将数据点组织成层次结构的聚类方法,它逐步合并或划分数据点以形成聚类。这种方法不需要预先指定要形成的聚类数量,而是通过一系列步骤来建立聚类层次。层次聚类可以分为两种主要类型:凝聚型和分裂型。
凝聚型层次聚类(Agglomerative Hierarchical Clustering):在凝聚型方法中,每个数据点被视为一个单独的聚类,然后逐步将具有最小距离的聚类合并成更大的聚类,直到所有数据点都在一个大聚类中。这种方法从底部开始,形成一个聚类树或树状图,每个节点都代表一个聚类。
分裂型层次聚类(Divisive Hierarchical Clustering):在分裂型方法中,所有数据点都被视为一个大聚类,然后逐步将聚类分裂成更小的聚类,直到每个数据点都在自己的聚类中。这种方法从顶部开始,形成一个倒置的聚类树。
步骤
层次聚类的步骤通常如下:
计算距离或相似度矩阵:首先,计算每对数据点之间的距离或相似度,用于衡量它们之间的关系。
初始化聚类:开始时,每个数据点被视为一个单独的聚类。
合并或分裂聚类:根据一定的合并或分裂准则,逐步合并或分裂聚类,直到达到指定的停止条件。常用的合并准则包括单链接、完全链接和平均链接。
构建聚类层次:根据合并或分裂的步骤,构建聚类的层次结构,通常以树状图的形式表示。
根据需求截断层次:根据应用需求,可以选择在树状图中截断聚类层次,从而得到特定数量的聚类。
代码实现
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
# 创建一个示例数据集
n_samples = 150
n_features = 2
n_clusters = 3
X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_clusters, random_state=42)
# 使用凝聚型层次聚类
n_clusters_desired = 3
model = AgglomerativeClustering(n_clusters=n_clusters_desired)
model.fit(X)
labels = model.labels_
# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='rainbow')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Agglomerative Hierarchical Clustering')
plt.show()