Qwen3 是最新发布的大语言模型系列,在推理、对话、工具调用、多语言处理等方面进行了全面升级。相比此前的 Qwen2.5 和 QwQ,Qwen3 在综合性能上有显著提升。
主要特点包括:
- 模型规模多样:涵盖 0.6B、1.7B、4B、8B、14B、32B 稠密模型,以及 30B-A3B、235B-A22B 的专家混合(MoE)模型。
- 思考模式与非思考模式切换:支持在复杂推理任务(思考模式)和高效闲聊任务(非思考模式)之间无缝切换。
- 推理与生成能力提升:在数学推理、代码生成、常识推理等方面,表现优于 Qwen2.5。
- 自然语言交互优化:在多轮对话、创意写作、角色扮演和指令跟随等场景中更加自然流畅。
- 多语言支持:覆盖 100 多种语言和方言,具备强大的多语言指令理解与翻译能力。
- 工具调用能力增强:在复杂 Agent 任务中展现出领先的开源性能,支持精准调用外部工具。
命名规则更新说明:
- 后训练(指令微调)模型不再使用 “-Instruct” 后缀。例如,
Qwen3-32B
相当于旧版的Qwen2.5-32B-Instruct
。 - 基础(未微调)模型名称以 “-Base” 结尾,如
Qwen3-14B-Base
。
发布历史
时间 | 发布内容 |
---|---|
2025.04.29 | Qwen3 系列发布 |
2024.09.19 | Qwen2.5 系列发布,新增 3B、14B、32B |
2024.06.06 | Qwen2 系列发布 |
2024.03.28 | 发布首个 MoE 模型 Qwen1.5-MoE-A2.7B |
2024.02.05 | Qwen1.5 系列发布 |
快速上手
使用 Hugging Face Transformers 框架,可以快速体验 Qwen3 模型。
示例代码:
from transformers import AutoModelForCausalLM, AutoTokenizermodel_name = "Qwen/Qwen3-8B"tokenizer = AutoTokenizer.from_pretrained(model_name)model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")prompt = "Give me a short introduction to large language models."messages = [{"role": "user", "content": prompt}]text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=True)model_inputs = tokenizer([text], return_tensors="pt").to(model.device)generated_ids = model.generate(**model_inputs, max_new_tokens=32768)output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()print(tokenizer.decode(output_ids, skip_special_tokens=True))
默认启用思考模式(enable_thinking=True
),可根据需要调整。
部署支持
Qwen3 可在多种环境下高效部署,适配主流推理与部署框架:
框架 | 特点 |
---|---|
Transformers | 支持推理与微调,更新频繁 |
ModelScope | 国内高速下载,API 与 Transformers 类似 |
llama.cpp | 支持本地高效推理和 GGUF 格式 |
Ollama | 一键下载运行,提供 OpenAI 兼容 API |
SGLang / vLLM | 高吞吐量推理引擎,适合大规模部署 |
LMStudio | 桌面 GUI 工具,适配 GGUF 模型 |
MLX-LM | Apple Silicon 支持(适配 M1/M2/M3 芯片) |
示例:使用 vLLM 快速部署
vllm serve Qwen/Qwen3-8B --port 8000 --enable-reasoning-parser --reasoning-parser deepseek_r1
API 接口地址默认:http://localhost:8000/v1
应用与扩展
- 工具调用:通过 SGLang、vLLM、Transformers、llama.cpp 等框架,结合 Qwen-Agent 进行智能工具调用。
- 模型微调:支持使用 Axolotl、Unsloth、Swift、Llama-Factory 等主流训练工具进行 SFT、DPO、GRPO 等微调流程。
那么,如何系统的去学习大模型LLM?
作为一名深耕行业的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!