最详解泊松分布Poisson distribution

本文介绍了泊松分布的概念及其数学期望与方差,并通过MATLAB代码展示了不同参数下的泊松分布概率密度函数。此外还提到了泊松分布的实际应用场景。

概念:

设随机变量X的分布律为

P\begin{Bmatrix} X=k \end{Bmatrix}=\frac{\lambda ^{k}}{k!}e^{-\lambda },k=0,1,2,...

其中\lambda \geqslant 0,则称X服从参数为\lambda泊松分布,记为X\sim B(\lambda )\pi (\lambda ).

显然

P\begin{Bmatrix} X=k \end{Bmatrix}> 0,k=0,1,2,...

\sum^{\infty}_{k=0}P\begin{Bmatrix} X=k \end{Bmatrix}=\sum^{\infty}_{k=0}\frac{\lambda ^{k}}{k!}e^{-\lambda }=e^{-\lambda }\sum^{\infty}_{k=0}\frac{\lambda ^{k}}{k!}=e^{-\lambda }e^{\lambda }=1

  

%MATLAB代码
x=1:40;
y1=pdf('poiss',1:40,1);
plot(x,y1,'k','LineWidth',3);hold on;
y2=pdf('poiss',1:40,4);
plot(x,y2,'g','LineWidth',3);hold on;
y3=pdf('poiss',1:40,10);
plot(x,y3,'r','LineWidth',3);hold on;
y4=pdf('poiss',1:40,20);
plot(x,y4,'b','LineWidth',3);hold 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值