基本极限定理(切比雪夫不等式,大数定律,中心极限定理)

人们在长期的实践中发现,虽然个别事件在某次试验中可能发生也可能不发生,但在大量重复实验中却呈现明显的规律性,即一个随机事件发生的频率在某个固定数的附近摇摆,这就是所谓“频率的稳定性”。

这里介绍的就是概率论的理论基础!戳这里:概率论思维导图

切比雪夫不等式

设随机变量X的数学期望E(X)=\mu,方差D(X)=\sigma ^{2},对任意的\varepsilon >0,有

P\begin{Bmatrix} \begin{vmatrix} X-\mu \end{vmatrix}\geqslant \varepsilon \end{Bmatrix}\leqslant \frac{\sigma ^{2}}{\varepsilon ^{2}}

P\begin{Bmatrix} \begin{vmatrix} X-\mu \end{vmatrix}< \varepsilon \end{Bmatrix}\geqslant 1- \frac{\sigma ^{2}}{\varepsilon ^{2}}

例题:

已知随机变量X的数学期望E(X)=100,方差D(X)=10,试估计X落在(80,120)内的概率

解:

由切比雪夫不等式

P\begin{Bmatrix} 80<X<120 \end{Bmatrix}=P\begin{Bmatrix} \begin{vmatrix} X-100 \end{vmatrix}<20 \end{Bmatrix}\geqslant 1-\frac{10}{20^{2}}=0.975

大数定理

伯努利大数定理

Y_{n}是n重伯努利试验中事件A发生的次数,p是事件A在每次试验中发生的概率,对于任意的\varepsilon >0,有

\underset{n\rightarrow \infty}{lim}P\begin{Bmatrix} \begin{vmatrix} \frac{Y_{n}}{n}-p \end{vmatrix}\geqslant \varepsilon \end{Bmatrix}=0

该定理表明,当n充分大时,事件A发生的频率\frac{Y_{n}}{n}与概率p的差的绝对值大于任意指定正数\varepsilon的概率可以任意小。

切比雪夫大数定理

设相互独立的随机变量X_{1},X_{2},...,X_{n},...分别具有数学期望E(X_{1}),E(X_{2}),...E(X_{n}),...及方差D(X_{1}),D(X_{2}),...,D(X_{n})...,若存在常数C,使

D(X_{i})\leqslant C,i=1,2,...

则对于任意的\varepsilon >0,有

\underset{n\rightarrow \infty}{lim}P\begin{Bmatrix} \begin{vmatrix} \frac{1}{n}\sum^{n}_{i=1}X_{i}-\frac{1}{n}\sum^{n}_{i=1}E(X_{i}) \end{vmatrix}\geqslant \varepsilon \end{Bmatrix}=0

推论

设相互独立的随机变量X_{1},X_{2},...,X_{n},...,服从相同的分布,且E(X_{i})=\mu ,D(X_{i})=\sigma ^{2}(i=1,2,...),则对任意的\varepsilon >0,有

\underset{n\rightarrow \infty}{lim}P\begin{Bmatrix} \begin{vmatrix} \frac{1}{n}\sum^{n}_{i=1}X_{i}-\mu \end{vmatrix}\geqslant \varepsilon \end{Bmatrix}=0

 

中心极限定理

同分布的中心极限定理

设相互独立的随机变量X_{1},X_{2},...,X_{n},...服从相同的分布,且E(X_{i})=\mu ,D(X_{i})=\sigma ^{2}\neq 0(i=1,2,...),则随机变量

Y_{n}=\frac{\sum^{n}_{i=1}X_{i}-n\mu }{\sqrt{n}\sigma }

的分布函数F_{n}(x)=P\begin{Bmatrix} Y_{n}\leqslant x \end{Bmatrix}对任意实数x,满足

\underset{n\rightarrow \infty }{lim}F_{n}(x)=\int_{-\infty }^{x}\frac{1}{\sqrt{2\pi }}e^{-\frac{t^{2}}{2}}dt=\Phi (x)

该定理的结论也可以写为:对于任意的a<b,有

\underset{n\rightarrow \infty}{lim}P\begin{Bmatrix} a<Y_{n}\leqslant b \end{Bmatrix}=\underset{n\rightarrow \infty}{lim}P\begin{Bmatrix} a< \frac{\sum^{n}_{i=1}X_{i}-n\mu }{\sqrt{n}\sigma }\leqslant b \end{Bmatrix}=\Phi (b)-\Phi(a)

棣莫弗—拉普拉斯中心极限定理

Y_{n}\sim B(n,p),n=1,2,...,其中0<p<1,q=1-p,则对任意实数x,有

\underset{n\rightarrow \infty}{lim}P\begin{Bmatrix} \frac{Y_{n}-np }{\sqrt{npq} }\leqslant x \end{Bmatrix}=\int_{-\infty }^{x}\frac{1}{\sqrt{2\pi }}e^{-\frac{t^{2}}{2}}dt=\Phi (x)

例题:

某车间有200台车床,在生产时间内有于需要检修、调换刀具、变换位置、调换工件等常需停车。设开工率为0.6,并设每台车床的工作是独立的。在开工时需电1kW。问应供应该车间多少千瓦电力才能以99.9%的概率不会因为供电不足而影响生产。

解:

设应供应N kW电力,而某时刻工作着的车床数为X,显然X\sim B(200,0.6)

 

  • 18
    点赞
  • 56
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值