连续型随机变量的函数分布及例题

这篇博客探讨了如何求解二维连续型随机变量的函数Z的分布函数,通过给出具体的例子,解释了利用联合概率密度函数求解Z的概率密度函数的方法。读者可以借此加深对概率论中随机变量函数分布的理解。

戳这里:概率论思维导图!!!

一般情况,如果随机变量Z是二维连续型随机变量(X,Y)的函数:

Z=g(X,Y)

且(X,Y)的联合概率密度函数为f(x,y),则可用以下方式求Z的分布函数:

F_{Z}(z)=P\begin{Bmatrix} Z\leqslant z \end{Bmatrix}=P\begin{Bmatrix} g(X,Y)\leqslant z \end{Bmatrix}=\iint_{D_{z}}f(x,y)dxdy

其中 D_{z} 为  xOy 平面上由 g(x,y)\leqslant z 所决定的区域


欢迎大家来讨论这个例题:

设二维连续型随机变量(X,Y)的联合概率密度函数为f(x,y),求 Z=\frac{X}{Y} 的概率密度函数 f_{Z}(z)

解:设Z的分布函数为F_{Z}(z),则

F_{Z}(z)=P\begin{Bmatrix} Z\leqslant z \end{Bmatrix}=P\begin{Bmatrix} \frac{X}{Y}\leqslant Z\end{Bmatrix}=\iint_{x/y\leqslant z}f(x,y)dxdy=\int_{0}^{+\infty }\int_{-\infty }^{zy}f(x,y)dxdy+\int_{-\infty }^{0 }\int_{zy }^{+\infty }f(x,y)dxdy

故Z的概率密度函数为

f_{Z}(z)=F_{Z}'(z)=\int_{0}^{+\infty }yf(zy,y)dy-\int_{-\infty}^{0}yf(zy,y)dy=\int_{-\infty}^{+\infty}\begin{vmatrix} y \end{vmatrix}f(zy,y)dy

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值