Poisson分布

本篇笔记内容来源
概率论与数理统计教程(第三版) 茆诗松 高等教育出版社
数理统计学导论(原书第7版) 机械工业出版社


pdf

P ( X = k ) = λ k k ! e − λ , k ∈ N ∗ , λ > 0 P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},k\in N^*,\lambda>0 P(X=k)=k!λkeλ,kN,λ>0

记为 X ∼ P ( λ ) X\sim P(\lambda) XP(λ)


期望和方差

  • ( 泰勒展开 )   e x = ∑ k = 0 ∞ x k k ! (泰勒展开)\ e^x=\sum^\infty_{k=0}\frac{x^k}{k!} (泰勒展开) ex=k=0k!xk

  • E ( X ) = ∑ k = 0 ∞ k λ k k ! e − λ = λ e − λ ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! = λ e − λ e λ = λ \begin{align*} E(X)&=\sum^\infty_{k=0}k\frac{\lambda^k}{k!}e^{-\lambda}\\ &=\lambda e^{-\lambda}\sum^\infty_{k=1}\frac{\lambda^{k-1}}{(k-1)!}\\ &=\lambda e^{-\lambda}e^\lambda\\ &=\lambda \end{align*} E(X)=k=0kk!λkeλ=λeλk=1(k1)!λk1=λeλeλ=λ

  • E ( X 2 ) = ∑ k = 0 ∞ k 2 λ k k ! e − λ = e − λ ∑ k = 0 ∞ k λ k ( k − 1 ) ! = e − λ ∑ k = 0 ∞ [ ( k − 1 ) + 1 ] λ k ( k − 1 ) ! = λ 2 e − λ λ k − 2 ( k − 2 ) ! + λ e − λ ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! = λ 2 + λ \begin{align*} E(X^{2})&=\sum^\infty_{k=0}k^2\frac{\lambda^k}{k!}e^{-\lambda}\\ &=e^{-\lambda}\sum^\infty_{k=0}k\frac{\lambda^k}{(k-1)!}\\ &=e^{-\lambda}\sum^\infty_{k=0}[(k-1)+1]\frac{\lambda^k}{(k-1)!}\\ &=\lambda^2 e^{-\lambda}\frac{\lambda^{k-2}}{(k-2)!}+\lambda e^{-\lambda}\sum^\infty_{k=1}\frac{\lambda^{k-1}}{(k-1)!}\\ &=\lambda^2+\lambda \end{align*} E(X2)=k=0k2k!λkeλ=eλk=0k(k1)!λk=eλk=0[(k1)+1](k1)!λk=λ2eλ(k2)!λk2+λeλk=1(k1)!λk1=λ2+λ

    所以方差为 V a r ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = λ 2 + λ − λ 2 = λ Var(X)=E(X^2)-[E(X)]^2=\lambda^2+\lambda-\lambda^2=\lambda Var(X)=E(X2)[E(X)]2=λ2+λλ2=λ


矩母函数

M ( t ) = ∑ x e t x p ( x ) = ∑ x = 0 ∞ e t x m x e − m x ! = e − m ∑ x = 0 ∞ ( m e t ) x x ! = e − m e m e t = e m ( e t − 1 ) M(t)=\sum_xe^{tx}p(x)= \sum^{\infty}_{x=0}e^{tx}\frac{m^xe^{-m}}{x!}= e^{-m}\sum^{\infty}_{x=0}\frac{(me^t)^x}{x!}= e^{-m}e^{me^t}=e^{m(e^t-1)} M(t)=xetxp(x)=x=0etxx!mxem=emx=0x!(met)x=ememet=em(et1)


二项分布的泊松近似

在二项分布 b ( n . p ) b(n.p) b(n.p) 中,当 n n n 较大时,计算量是令人烦恼的.

而在 n n n 较大且 p p p 较小时使用以下泊松定理,可以减少二项分布中的计算量

(泊松定理) 在 n n n 重伯努利试验中,记事件 A A A 在一次试验中发生的概率为 p n p_n pn (与实验次数 n n n 有关),如果当 n → ∞ n\rightarrow\infty n 时,有 n p n → λ np_n\rightarrow\lambda npnλ ,则

lim ⁡ n → ∞ ( n k ) p n k ( 1 − p n ) n − k = λ k k ! e − λ \lim_{n\rightarrow\infty}\Big( \begin{matrix} n\\k \end{matrix} \Big) p^k_n(1-p_n)^{n-k}=\frac{\lambda^k}{k!}e^{-\lambda} nlim(nk)pnk(1pn)nk=k!λkeλ

附上教材截图

在这里插入图片描述


可加性

假定 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn 是独立随机变量,并设 X i X_i Xi 服从参数为 m i m_i mi 的泊松分布. 于是, Y = ∑ i = 1 n X i Y=\sum^n_{i=1}X_i Y=i=1nXi 服从参数为 ∑ i = 1 n m i \sum^n_{i=1}m_i i=1nmi 的泊松分布.
  • 43
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值