gstreamer-appsink元素的使用&与opencv交互的示例

本文介绍了GStreamer中Appsink的功能及使用方法。Appsink作为sink元素,能够将pipeline中的流媒体数据提供给其他应用程序处理。文章详细解释了如何通过设置属性如max-buffers和drop来控制数据流,并给出了具体的步骤和相关API示例。

appsink的功能

extract samples from a pipeline
use a queue to collect buffers from the streaming thread
简单的说 appsink 元素作为gstreamer的sink节点,它可以实现pipeline中的流媒体数据与其他应用程序的交换,比如实现gstreamer与CUDA交互,gstreamer与OpenCV交互,等等吧。
`
主要作用是借助gstreamer pipeline的 media streaming, 我们通过appsink用一个buffer来收集流媒体的数据,提供给其他应用程序来处理使用。

appsink的使用

通常方法:
gst_app_sink_pull_sample(), gst_app_sink_pull_preroll()
gst_app_sink_pull_preroll(),gst_app_sink_pull_preroll()

max-buffers 属性  限制buffer size
!!!  If the application is not pulling samples fast enough, this queue will consume a lot of memory over time.

drop 属性    控制streaming thread是否阻塞,或者是否在达到最大队列时丢弃旧的缓存区
!!! 阻塞线程流会对实时性能产生影响,应该避免使用。


使用步骤:

  1. 创建gstreamer pipeline, 最后的sink节点是appsink
  2. appsink
  3. gst_appsink_callback
    - onEOS
    - onPrerool
    - onBuffer
    -
    //获取media sample相关的缓冲区 gstBuffer
    gst_app_sink_pull_sample()
    gst_sample_get_buffer()

buffer 映射 map.data map.size
gst_buffer_map()

根据appsink的caps 得到数据类型,每帧数据的width heigth
gst_sample_get_caps()
gst_caps_get_structure()
gst_structure_get_int()

  1. 分配内存,内存拷贝

参考文档:
GstAppSink — Easy way for applications to extract samples from a pipeline

GstBuffer — Data-passing buffer type
GstSample — A media sample

jetauto@jetauto-desktop:~/jetauto_ws/src/jetauto_example/scripts/yolov5_detect$ python3 xwc.py [10/29/2024-18:41:42] [TRT] [I] [MemUsageChange] Init CUDA: CPU +224, GPU +0, now: CPU 265, GPU 3416 (MiB) [10/29/2024-18:41:42] [TRT] [I] Loaded engine size: 22 MiB [10/29/2024-18:41:47] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +158, GPU +36, now: CPU 452, GPU 3479 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +240, GPU -12, now: CPU 692, GPU 3467 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +21, now: CPU 0, GPU 21 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +0, now: CPU 670, GPU 3445 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +0, GPU +0, now: CPU 670, GPU 3445 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +34, now: CPU 0, GPU 55 (MiB) bingding: data (3, 480, 640) bingding: prob (38001, 1, 1) (python3:31020): GStreamer-CRITICAL **: 18:41:55.346: Trying to dispose element pipeline0, but it is in READY instead of the NULL state. You need to explicitly set elements to the NULL state before dropping the final reference, to allow them to clean up. This problem may also be caused by a refcounting bug in the application or some element. [ WARN:0@21.714] global /home/jetauto/opencv/modules/videoio/src/cap_gstreamer.cpp (1356) open OpenCV | GStreamer warning: unable to start pipeline (python3:31020): GStreamer-CRITICAL **: 18:41:55.347: Trying to dispose element videoconvert0, but it is in PAUSED instead of the NULL state. You need to explicitly set elements to the NULL state before dropping the final reference, to allow them to clean up. This problem may also be caused by a refcounting bug in the application or some element. [ WARN:0@21.714] global /home/jetauto/opencv/modules/videoio/src/cap_gstreamer.cpp (862) isPipelinePlaying OpenCV | GStreamer warning: GStreamer: pipeline have not been created (python3:31020): GStreamer-CRITICAL **: 18:41:55.347: Trying to dispose element appsink0, but it is in READY instead of the NULL state. You need to explicitly set elements to the NULL state before dropping the final reference, to allow them to clean up. This problem may also be caused by a refcounting bug in the application or some element. (python3:31020): GStreamer-CRITICAL **: 18:41:55.350: gst_element_post_message: assertion 'GST_IS_ELEMENT (element)' failed ^CTraceback (most recent call last): File "xwc.py", line 431, in <module> boxes, scores, classid = yolov5_wrapper.infer(frame) File "xwc.py", line 153, in infer input_image, image_raw, origin_h, origin_w = self.preprocess_image(raw_image_generator) File "xwc.py", line 264, in preprocess_image image = np.transpose(image, [2, 0, 1]) File "<__array_function__ internals>", line 6, in transpose File "/usr/local/lib/python3.6/dist-packages/numpy/core/fromnumeric.py", line 653, in transpose return _wrapfunc(a, 'transpose', axes) KeyboardInterrupt ------------------------------------------------------------------- PyCUDA ERROR: The context stack was not empty upon module cleanup. ------------------------------------------------------------------- A context was still active when the context stack was being cleaned up. At this point in our execution, CUDA may already have been deinitialized, so there is no way we can finish cleanly. The program will be aborted now. Use Context.pop() to avoid this problem. 解释
04-02
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一銤阳光

希望分享的内容对你有帮助

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值