机器学习&算法分析
文章平均质量分 95
机器学习算法学习与总结的专栏记录
一銤阳光
这个作者很懒,什么都没留下…
展开
-
《PyTorch深度学习实战 + 动手学深度学习》学习小结
PyTorch是Facebook发布的一款非常具有个性的深度学习框架,它和Tensorflow,Keras,Theano等其他深度学习框架都不同,它是动态计算图模式,其应用模型支持在运行过程中根据运行参数动态改变,而其他几种框架都是静态计算图模式,其模型在运行之前就已经确定。原创 2022-11-27 12:25:28 · 1117 阅读 · 0 评论 -
LightGBM -- Light Gradient Boosting Machine
LightGBM 是微软开源的一个基于决策树和XGBoost的机器学习算法。具有分布式和高效处理大量数据的特点。原创 2022-10-16 22:39:32 · 1470 阅读 · 0 评论 -
机器学习算法竞赛实战-学习总结
本文为 《机器学习算法竞赛实战》by 王贺、刘鹏、钱乾一书的学习手记。仅以此书来入门Kaggle等机器学习竞赛,学习Kaggle竞赛题该如何做,具体问题该如何用机器学习的方法来解决。原创 2022-10-02 11:46:19 · 2017 阅读 · 0 评论 -
caffe网络可视化的多种方式
文章目录写在前面draw_net pycaffe工具Netscope 在线caffe网络可视化编辑工具写在前面在caffe网络的训练和调试的过程中,将网络结构可视化,可以更加直观地进行网络调整,将caffe网络结构可视化也有多种方式,下面来一一介绍。draw_net pycaffe工具caffe提供了基于Python的网络结构可视化工具,只需要编译pycaffe后,便可以直接使用。工...原创 2018-11-03 19:18:50 · 763 阅读 · 0 评论 -
Batch Normalization
Batch Normal基本思想BN的基本思想其实相当直观:因为深层神经网络在做非线性变换前的激活输入值(就是那个x=WU+B,U是输入)随着网络深度加深或者在训练过程中,其分布逐渐发生偏移或者变动,之所以训练收敛慢,一般是整体分布逐渐往非线性函数的取值区间的上下限两端靠近(对于Sigmoid函数来说,意味着激活输入值WU+B是大的负值或正值),所以这导致后向传播时低层神经网络的梯度消失,这是...原创 2018-11-04 11:14:11 · 330 阅读 · 0 评论 -
caffe 网络模型文件中的参数含义(top bottom lr_mult decay_mult)与模型编写以及模型自定义
__net.prototxt基本概念layer{name: "" type: "Data、Scale、Convolution、ReLU、Pooling、 Eltwise、InnerProduct、Accuracy、Softmax、Python" bottom: &amp原创 2018-11-02 21:11:25 · 5350 阅读 · 2 评论 -
caffe 超参数设置
文章目录写在前面solver.prototxt写在前面caffe的超参数文本是caffe非常重要的一个文件,它是caffe训练网络的一个入口solver.prototxttest_iter: 580test_interval: 4420base_lr: 0.001display: 278max_iter: 88400lr_policy: "poly"power: 1.0mom...原创 2018-11-02 22:09:58 · 1111 阅读 · 1 评论 -
caffe模型与层
caffe 模型caffe支持的层模型的定义优化设置预训练权重caffe Model Zoo https://github.com/BVLC/caffe/wiki/Model-Zoo原创 2018-11-27 08:38:20 · 257 阅读 · 0 评论 -
使用caffe python接口进行网络测试,并可视化网络中间内容
import numpy as npimport matplotlib.pyplot as plt%matplotlib inline##加载caffeimport sysimport osimport caffecaffe_root = '/home/hualong/ssd/software/caffe'sys.path.insert(0, caffe_root + 'p...原创 2018-12-10 22:50:01 · 715 阅读 · 0 评论 -
神经网络的训练与部署
训练一个网络的三要素:结构、算法、权值网络模型一旦选定,三要素中结构和算法就确定了,接下来要对权值进行调整。 神经网络是将一组训练集(training set)送入网络,根据网络的实际输出与期望输出间的差别来调整权值。训练模型的步骤:选择样本集合的一个样本(Ai Bi) (数据 标签)送入网络,计算网络的实际输出Y(此时网络中的权重都是随机的)计算D=Bi -Y(预测值原创 2018-01-27 14:21:04 · 3609 阅读 · 0 评论 -
TensorRT程序分析
写在前面simpleMNISTcppPart1 caffe model 到 TensorRT model的转换 gieModelStreamPart2 输入 输入文件与均值文件作差 -dataINPUT_HINPUT_WPart3 反序列化引擎 得到-IExecutionContext contextPart4 执行推理输出结果doInferencecontext data pro原创 2018-01-27 20:43:36 · 5538 阅读 · 0 评论 -
(一)openCV在ubuntu下的配置与测试
安装cmake 因为高版本的openCV 需要高版本的cmake工具,所以先更新cmake 下载cmake自己编译安装 ./configure –prefix=/usr/local make sudo make install安装opencv3.30 下载openCV源码文件 cd ~/opencv-x.x.x mkdir release cd relea原创 2017-11-03 16:25:03 · 386 阅读 · 0 评论 -
1 Ubuntu系统下的caffe安装与配置
安装 NVIDIA 显卡驱动安装CUDA安装cuDNN安装 OpenCV3.2安装NCCL (多GPU情况)安装OpenBLAS 默认配置安装NVcaffeerror安装 NVIDIA 显卡驱动 进入Ctrl+Alt+F1 终端界面 sudo service lightdm stop sudo add-apt-repository ppa...原创 2017-11-19 12:06:37 · 914 阅读 · 0 评论 -
神经网络初识体验
什么是人工神经网络 在了解人工神经网络之前,首先来了解一下生物神经网络。 生物神经元的结构:神经细胞是构成神经系统的基本单元,称之为生物神经元,简称神经元。神经元主要由三部分构成:(1)细胞体;(2)轴突;(3)树突。如下图所示: 突触是神经元之间相互连接的接口部分,即一个神经元的神经末梢与另一个神经元的树突相接触的交界面,位于神经元的神经末梢尾端。突触是轴突的终端。 大脑可视原创 2017-11-16 11:45:00 · 697 阅读 · 0 评论 -
人工智能(AI)&机器学习(ML)&深度学习(DL)
人工智能:从概念提出到走向繁荣1956年,几个计算机科学家相聚在达特茅斯会议,提出了“人工智能”的概念,梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言,或被当成技术疯子的狂想扔到垃圾堆里。直到2012年之前,这两种声音还在同时存在。20转载 2017-11-16 23:49:21 · 1295 阅读 · 0 评论 -
Nvidia/DIGITS 可视化深度学习训练系统
https://github.com/NVIDIA/DIGITS https://developer.nvidia.com/digits原创 2017-12-31 13:22:37 · 1950 阅读 · 0 评论 -
百度 Apollo2.0
P4-AI生态开放战略 先向大家介绍一下百度做自动驾驶的背景。就像百度总裁COO陆奇在CES大会上讲的,可能不少朋友已经了解到了——百度已经是一家AI公司。 我们可以看到科技大潮的演进,已经从命令行、客户端服务器、互联网、移动互联网一路走来,进入到了AI时代。 在百度AI开放生态战略中,体系分成云和端,支撑的云技术是智能云和百度大脑,而端的输出就是自动驾驶Apollo生态和唤醒外物的Duer转载 2018-01-11 21:43:02 · 10122 阅读 · 0 评论 -
使用ROS&gazebo 搭建无人驾驶仿真环境
SummaryVehicle model: PriusEnvironment models: Mcity,Sonoma RacewayPlugin: Powertrain modelRoad networks: Ignition RNDF Ignition RNDF is a portable C++ library for parsing RNDF road network fi原创 2018-01-07 14:02:35 · 7935 阅读 · 0 评论 -
JetsonTX1-inference(DIGIT训练+TensorRT 部署)
这是一个在NVIDIA Jetson TX1/TX2上部署基于TensorRT的深度学习推理和深度视觉感知的指导教程。https://github.com/dusty-nv/jetson-inferenceDeep-learning nodes for ROS with support for NVIDIA Jetson TX1/TX2 and TensorRT部署深度学习翻译 2017-12-20 11:45:41 · 2959 阅读 · 0 评论 -
1 Ubuntu系统下的CUDA安装与配置
安装 NVIDIA 显卡驱动禁用 nouvean 驱动安装 NVIDIA 驱动验证安装是否成功安装CUDA安装cuDNN安装 NVIDIA 显卡驱动禁用 nouvean 驱动安装 NVIDIA 驱动验证安装是否成功参考文档: 【Linux开发】【CUDA开发】Ubuntu上安装NVIDIA显卡驱动__Zhang_P_YUbuntu安装NVIDIA驱动补充_解决开机循环密码___TriLo原创 2017-07-19 09:05:20 · 694 阅读 · 0 评论