AI论文探讨室·A+·第2期 DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction

NeurIPS2019

《DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction》

论文链接

代码链接

主要解决的问题:从单张图像中重建3D模型,即给定一张图像预测有符号距离域

具体描述

        除了使用全局图像特征,DISN也预测局部块的每个3D点投影和提取局部特征从块中。通过结合全局和局部特征信息来提升预测有符号距离域。DISN是第一个提出从单张图像中得到连续捕获细节例如空洞和薄结构3D图像模型。

当前网络对比效果图

系统架构

与现有网络进行质量评估

主要工作

(1)设计了局部特征提取模块,使用相机位姿估计将3D点投影到图像平面

(2)给定一个3D点和一张输入图像,DISN预测点的SDF值

有待解决

(1)该方案只能解决具有清晰背景情况,因为训练使用的是渲染图像

将来工作

使用不同的渲染来进行问题预测,从而扩展SDF的生成。

了解更多关于《计算机视觉与图形学》相关知识,请关注公众号:

下载我们视频中代码和相关讲义,请在公众号回复:计算机视觉课程资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值