Ubuntu18 查看CUDA的CUDA_ARCH_BIN

我们在使用源码编译带cuda的opencv时,需要设置显卡的CUDA_ARCH_BIN,本文介绍一下获得该值的方法

方法一

安装好cuda之后,可以从cuda sample中获得

 
  1. cd /usr/local/cuda/samples/1_Utilities/deviceQuery

  2. sudo make

  3. ./deviceQuery

如上,运行后输出信息如下

 
  1. nvidia@nvidia-X10SRA:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery

  2. ./deviceQuery Starting...

  3.  
  4. CUDA Device Query (Runtime API) version (CUDART static linking)

  5.  
  6. Detected 3 CUDA Capable device(s)

  7.  
  8. Device 0: "Tesla T4"

  9. CUDA Driver Version / Runtime Version 10.2 / 10.2

  10. CUDA Capability Major/Minor version number: 7.5

  11. Total amount of global memory: 15110 MBytes (15843721216 bytes)

  12. (40) Multiprocessors, ( 64) CUDA Cores/MP: 2560 CUDA Cores

  13. GPU Max Clock rate: 1590 MHz (1.59 GHz)

  14. Memory Clock rate: 5001 Mhz

  15. Memory Bus Width: 256-bit

  16. L2 Cache Size: 4194304 bytes

  17. Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)

  18. Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers

  19. Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers

  20. Total amount of constant memory: 65536 bytes

  21. Total amount of shared memory per block: 49152 bytes

  22. Total number of registers available per block: 65536

  23. Warp size: 32

  24. Maximum number of threads per multiprocessor: 1024

  25. Maximum number of threads per block: 1024

  26. Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

  27. Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

  28. Maximum memory pitch: 2147483647 bytes

  29. Texture alignment: 512 bytes

  30. Concurrent copy and kernel execution: Yes with 3 copy engine(s)

  31. Run time limit on kernels: No

  32. Integrated GPU sharing Host Memory: No

  33. Support host page-locked memory mapping: Yes

  34. Alignment requirement for Surfaces: Yes

  35. Device has ECC support: Enabled

  36. Device supports Unified Addressing (UVA): Yes

  37. Device supports Compute Preemption: Yes

  38. Supports Cooperative Kernel Launch: Yes

  39. Supports MultiDevice Co-op Kernel Launch: Yes

  40. Device PCI Domain ID / Bus ID / location ID: 0 / 2 / 0

  41. Compute Mode:

  42. < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

  43. ……

可以看到T4的相关信息,包括cuda capability为7.5,2560个cuda核心等

方法二

如果安装cuda时没有安装samples,则可以使用下边的方法

 
  1. git clone https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps.git

  2. cd deepstream_tlt_apps/TRT-OSS/x86

  3. nvcc deviceQuery.cpp -o deviceQuery

  4. ./deviceQuery

同样会输出上边类似的信息

方法三

官网查询,选择自己对应的显卡型号查询

方法四

如果是在jetson平台,可以使用 jtop 指令来查看

了解更多关于《计算机视觉与图形学》相关知识,请关注公众号:

在这里插入图片描述
下载我们视频中代码和相关讲义,请在公众号回复:计算机视觉课程资料

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值