我们在使用源码编译带cuda的opencv时,需要设置显卡的CUDA_ARCH_BIN,本文介绍一下获得该值的方法
方法一
安装好cuda之后,可以从cuda sample中获得
-
cd /usr/local/cuda/samples/1_Utilities/deviceQuery
-
sudo make
-
./deviceQuery
如上,运行后输出信息如下
-
nvidia@nvidia-X10SRA:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery
-
./deviceQuery Starting...
-
CUDA Device Query (Runtime API) version (CUDART static linking)
-
Detected 3 CUDA Capable device(s)
-
Device 0: "Tesla T4"
-
CUDA Driver Version / Runtime Version 10.2 / 10.2
-
CUDA Capability Major/Minor version number: 7.5
-
Total amount of global memory: 15110 MBytes (15843721216 bytes)
-
(40) Multiprocessors, ( 64) CUDA Cores/MP: 2560 CUDA Cores
-
GPU Max Clock rate: 1590 MHz (1.59 GHz)
-
Memory Clock rate: 5001 Mhz
-
Memory Bus Width: 256-bit
-
L2 Cache Size: 4194304 bytes
-
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
-
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
-
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
-
Total amount of constant memory: 65536 bytes
-
Total amount of shared memory per block: 49152 bytes
-
Total number of registers available per block: 65536
-
Warp size: 32
-
Maximum number of threads per multiprocessor: 1024
-
Maximum number of threads per block: 1024
-
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
-
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
-
Maximum memory pitch: 2147483647 bytes
-
Texture alignment: 512 bytes
-
Concurrent copy and kernel execution: Yes with 3 copy engine(s)
-
Run time limit on kernels: No
-
Integrated GPU sharing Host Memory: No
-
Support host page-locked memory mapping: Yes
-
Alignment requirement for Surfaces: Yes
-
Device has ECC support: Enabled
-
Device supports Unified Addressing (UVA): Yes
-
Device supports Compute Preemption: Yes
-
Supports Cooperative Kernel Launch: Yes
-
Supports MultiDevice Co-op Kernel Launch: Yes
-
Device PCI Domain ID / Bus ID / location ID: 0 / 2 / 0
-
Compute Mode:
-
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
-
……
可以看到T4的相关信息,包括cuda capability为7.5,2560个cuda核心等
方法二
如果安装cuda时没有安装samples,则可以使用下边的方法
-
git clone https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps.git
-
cd deepstream_tlt_apps/TRT-OSS/x86
-
nvcc deviceQuery.cpp -o deviceQuery
-
./deviceQuery
同样会输出上边类似的信息
方法三
官网查询,选择自己对应的显卡型号查询
方法四
如果是在jetson平台,可以使用 jtop 指令来查看
了解更多关于《计算机视觉与图形学》相关知识,请关注公众号:
下载我们视频中代码和相关讲义,请在公众号回复:计算机视觉课程资料