AI论文探讨室·A+·第1期-Real-time Convolutional Neural Networks for Emotion and Gender Classification

《Real-time Convolutional Neural Networks for Emotion and Gender Classification》

论文链接

代码链接

主要解决的问题:实时完成人脸检测、性别分类、情绪分类

具体描述说明

        在网络训练完成后,我们在标准数据集对该网络性能进行评估。在IMDB性别数据集上分类精度达到96%,在FER-2013情绪数据集分类精度达到66%。我们也介绍最近实时能够引导反向传播的可视化技术。引导反向传播能够显示动态权重变化和评估学习特征。我们认真地分析了当前CNN框架,使用当前正则化方法和可视先前隐藏特征是非常必要的,为了减少低性能和实时框架的差异。我们的系统已经被使用在Care-O-bot3机器人上,在RoboCup@Home竞赛中。

FER-2013数据集

IMDB数据集

网络框架

卷积网络的优化

实验结果

深层图像数据特征

主要工作

(1)通过使用纵深分开卷积,来代替全卷积网络,从而来减少参数个数;

(2)多个分类任务下,可以保证其实时性;

更多《计算机视觉与图形学》知识,可关注下方公众号:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值