轻松入门自然语言处理系列 项目3 基于Linear-CRF的医疗实体识别

本文详细介绍了医疗实体识别项目,包括项目概况、核心技术及实施步骤。通过数据标注、文本特征工程和CRF、BiLSTM-CRF模型训练,实现对医疗文本中疾病、部位等实体的识别。实验结果显示,模型能有效识别症状、体征和检查等类别,BiLSTM-CRF模型相比特征工程+CRF略有逊色。
摘要由CSDN通过智能技术生成

前言

本文主要介绍了以Linear-CRF为基础模型进行医疗实体识别的案例,主要包含项目概况、核心技术、项目实施3部分内容,由浅入深、适合初学者。

一、项目概况

1.项目描述

实体识别,简称 NER,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等,以及时间、数量、货币、比例数值等文字。如*ACM 宣布,深度学习的三位创造者 Yoshua Bengio,Yann LeCun,以及 Geoffrey Hinton 获得了 2019 年的图灵奖。*这句话中的实体有:ACM是机构名,Yoshua BengioYann LeCunGeoffrey Hinton是人名,2019 年是时间。医疗实体识别是识别出文本中一些具有特定医疗意义的实体,如疾病名、身体部位、治疗方法等。本项目基于 CRF 模型来进行医疗实体识别。

本项目会涉及到实体识别建模的各个流程:

  • 数据标注:使用实体识别中数据标注的技术,对数据按照特定的方式进行标注。

  • 文本特征工程:通过文本特征工程技术,构造出对本问题可能有效的特征。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东哥说AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值