最近在用C++做手写体识别,踩了许多坑。。网上使用SVM的教程遇到的都比较坑,看了半天没怎么涉及原理,而代码又比较乱,没怎么介绍,害我搞了一下午,所以就很烦,所幸最后终于找到了方法,所以想把这段比较痛苦的经历记录下来,造福后人。如果是想从本文弄懂原理的话,那比较抱歉。
说明
实验环境是:VS2017 + OpenCV3.4.0+win10;
关于配置OpenCV.3.4.0, 整个过程的步骤比较简单,结合代码,从读取数据,训练和预测三个方面来展开。
读取数据
先从官网下载好四个数据集,链接可以看这里。
在读取的时候,我对mnist数据集进行了二值化,将大于0的数据置为255。
关于读取步骤不多讲,直接上代码。
- 传入文件名,读取标签集,将标签数据转为Mat矩阵。读取数据的格式需要指定为CV_32SC1。这一步很重要!!其他版本可能不同,但是如果是其他类型的需要convertTo来转换,不然在训练数据的时候会报错。
void read_Mnist_Label(string filename, Mat* &trainLabel)
{
ifstream file(filename, ios::binary);
if (file.is_open())
{
int magic_number = 0;
int number_of_images = 0;
file.read((char*)&magic_number, sizeof(magic_number));
file.read((char*)&number_of_images, sizeof(number_of_images));
magic_number = ReverseInt(magic_number);
number_of_images = ReverseInt(number_of_images);
cout << "magic number = " << magic_number << endl;
cout << "number of images = " << number_of_images << endl;
trainLabel = new Mat(number_of_images, 1, CV_32SC1);
for (int i = 0; i < number_of_images; i++)
{
unsigned char label = 0;
file.read((char*)&label, sizeof(label));
if (label > 0) label = 255;
trainLabel->at<float>(i, 0) = label;
//cout << "Label: " << labels[i] << endl;
}
}
}
- 传入文件名,读取训练数据和测试数据集,将数据转为Mat矩阵。读取数据的格式需要指定为CV_32F,浮点型。这一步很重要!!其他版本可能不同,不然的话训练会报莫名的错误。
void read_Mnist_Images(string filename, Mat* &trainImages)
{
ifstream file(filename, ios::binary);
if (file.is_open())
{
int magic_number = 0;
int number_of_images = 0;
int n_rows = 0;
int n_cols = 0;
file.read((char*)&magic_number, sizeof(magic_number));
file.read((char*)&number_of_images, sizeof(number_of_images));
file.read((char*)&n_rows, sizeof(n_rows));
file.read((char*)&n_cols, sizeof(n_cols));
magic_number = ReverseInt(magic_number);
number_of_images = ReverseInt(number_of_images);
n_rows = ReverseInt(n_rows);
n_cols = ReverseInt(n_cols);
cout << "magic number = " << magic_number << endl;
cout << "number of images = " << number_of_images << endl;
cout << "rows = " << n_rows << endl;
cout << "cols &