本文主要介绍了 10 种常用且易于上手的可视化方法,基于python3.7实现。主要使用了两个图形可视化库,matplotlib & seaborn。这两个库的图形效果有细微差别,matplotlib较为流行且支持的可视化图形较多,seaborn也有特有的图形效果,二者搭配使用较佳。
以下提供10种方式的可视化供参考和上手!简单给出示例代码和效果图。(代码参考自网络,仅作分享学习记录使用,侵删)
只要记住API的调用方式就能迅速掌握了!
1. 散点图 scatter
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# 数据准备
N = 1000
x = np.random.randn(N)
y = np.random.randn(N)
# 用 Matplotlib 画散点图
plt.scatter(x, y,marker='x')
plt.show()
# 用 Seaborn 画散点图
df = pd.DataFrame({
'x': x, 'y': y})
sns.jointplot(x="x", y="y", data=df, kind='scatter');
plt.show()
2. 折线图 plot
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# 数据准备
x = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]
y = [5, 3, 6, 20, 17, 16, 19, 30, 32, 35]
# 使用 Matplotlib 画折线图
plt