10 个 python可视化实例 | 基于matplotlib & seaborn

本文通过10个实例展示了如何使用python的matplotlib和seaborn库进行数据可视化,包括散点图、折线图、直方图等。这些基本图形有助于理解多元数据关系,如箱线图、热力图、蜘蛛图和二元分布图等。通过示例代码和效果,读者可以快速掌握数据可视化的技巧。
摘要由CSDN通过智能技术生成

本文主要介绍了 10 种常用且易于上手的可视化方法,基于python3.7实现。主要使用了两个图形可视化库,matplotlib & seaborn。这两个库的图形效果有细微差别,matplotlib较为流行且支持的可视化图形较多,seaborn也有特有的图形效果,二者搭配使用较佳。

以下提供10种方式的可视化供参考和上手!简单给出示例代码和效果图。(代码参考自网络,仅作分享学习记录使用,侵删)

只要记住API的调用方式就能迅速掌握了!

1. 散点图 scatter

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# 数据准备
N = 1000
x = np.random.randn(N)
y = np.random.randn(N)
# 用 Matplotlib 画散点图
plt.scatter(x, y,marker='x')
plt.show()
# 用 Seaborn 画散点图
df = pd.DataFrame({
   'x': x, 'y': y})
sns.jointplot(x="x", y="y", data=df, kind='scatter');
plt.show()

2. 折线图 plot

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# 数据准备
x = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]
y = [5, 3, 6, 20, 17, 16, 19, 30, 32, 35]
# 使用 Matplotlib 画折线图
plt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值