点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
首届 “RoboDrive” 自动驾驶挑战赛将于 The 41st IEEE Conference on Robotics and Automation :ICRA 2024期间举办,网址:https://2024.ieee-icra.org/,欢迎大家了解及参与!
网址和时间安排
竞赛主页:https://robodrive-24.github.io
竞赛时间:2024.01.01 - 2024.04.30
竞赛Toolkit:https://github.com/robodrive-24/toolkit
竞赛主办方:上海人工智能实验室 (Shanghai AI Laboratory)、新加坡国立大学 (NUS)、卡耐基梅隆大学 (CMU)、上海科技大学 (Shanghai Tech)、加州大学欧文分校 (UCI)
竞赛联系邮箱:robodrive.2024@gmail.com
比赛介绍
在快速发展的自动驾驶领域,感知系统的准确性和可靠性至关重要。近期,自动驾驶场景感知及其相关领域的研究取得了突破性进展,尤其是在鸟瞰图 (BEV) 表征和 LiDAR 传感技术等方面取得了显著进步,进一步提升了 3D 场景感知模型在大型自动驾驶数据集上的准确率。
然而,现有的 3D 场景感知模型在各类具有挑战性的条件下的稳健性尚未得到充分评估,而此类情形往往与自动驾驶感知的安全性息息相关。为了填补这一空缺,我们推出了 “RoboDrive” 挑战赛,旨在推动对可靠 (reliable) 自动驾驶感知模型的探索和研究。
“RoboDrive” 是首个针对常见损坏 (common corruption) 和传感器故障 (sensor failure) 条件下自动驾驶感知模型的分布外 (Out-of-Distribution) 鲁棒性的基准测试。
具体地,我们旨在探究自动驾驶感知模型对可能在现实世界出现的六种常见损坏类型的鲁棒性,包括以下三种类型:
天气和照明条件 (weather & lighting),例如强光、弱光、雾天和雪天条件等。
运动和失效采集 (movement & acquisition),例如车辆运动引起的潜在模糊等。
由于硬件故障而发生的数据处理问题 (data processing issue),例如噪声和量化等。
此外,我们也关注自动驾驶感知模型在相机和 LiDAR 传感器故障条件下的 3D 场景感知鲁棒性。
主题一:常见损坏 (Common Corruptions)
赛道一:Robust BEV Detection (鸟瞰图3D物体检测)。
赛道二:Robust Map Segmentation (鸟瞰图地图分割)。
赛道三:Robust Occupancy Prediction (语义占用预测)。
赛道四:Robust Depth Estimation (多视角深度估计)。
主题二:传感器损坏 (Sensor Failures)
赛道五:Robust Multi-Modal BEV Detection (多模态鸟瞰图3D物体检测)。
有关各个赛道的训练和评测数据,请参阅 DATA_PREPARE.md。有关各个赛道的技术细节和baseline模型,请参阅 GET_STARTED.md。
有关其他实施细节,请参阅我们的 RoboBEV、RoboDepth 和 Robo3D 项目。
比赛地点
本届 “RoboDrive” 挑战赛隶属于 The 41st IEEE Conference on Robotics and Automation (第四十一届 IEEE 机器人与自动化会议, ICRA 2024:https://2024.ieee-icra.org/。
ICRA 是 IEEE Robotics and Automation Society (机器人与自动化协会) 旗下的旗舰会议,每年于会议期间吸引来自世界各地的数千名研究学者、学生以及相关行业从业人员参会。ICRA 2024将于 2024 年 5 月 13 日至 5 月 17 日在日本横滨举行。
比赛安排
注册链接:https://docs.google.com/forms/d/e/1FAIpQLSeA1HsM2BEi0Bauet8B7xYBYrzBTJpfKILKFM2RJKymVyl0aA/viewform
参赛规则
为保证评测的公平性,请使用学校邮箱或公司邮箱注册参赛;请勿使用qq、163、gmail等邮箱进行注册。
请使用指定训练集中的数据进行模型训练;请勿使用指定数据集之外的任意公开或私有的数据集进行模型训练。
请使用指定的数据增强方法进行模型训练;请勿使用指定数据增强方法之外的其他方法对训练数据进行处理。
为确保竞赛的公平性,请每位参赛者于最终结果宣布前提交可复现结果的模型代码;我们将手动对各参赛者的模型进行训练和测试等的验证。
有关更加具体的参赛规则 (Rules & Conditions) 和常见问题 (Frequently Asked Questions),请参阅 GET_STARTED.md。
比赛奖励
待定。
比赛答疑
邮箱:robodrive.2024@gmail.com
Twitter:https://twitter.com/RoboDrive2024
WeChat Group:https://robodrive-24.github.io/wechat_qr.jpg
Slack Group:https://join.slack.com/t/robodrive/shared_invite/zt-29fnp2iye-QZtwxSdCchil6noIiTxoXg
了解更多
竞赛主页:https://robodrive-24.github.io
竞赛官方GitHub账号:robodrive-24
竞赛Toolkit:https://github.com/robodrive-24/toolkit(待更新)
竞赛联系邮箱:mailto:robodrive.2024@gmail.com
投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!
① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、大模型与自动驾驶、Nerf、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)
视频官网:www.zdjszx.com② 国内首个自动驾驶学习社区
近2400人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!
③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!