ICRA2024 自动驾驶相关Paper整理

作者 | 牛牛牛肉饭  编辑 | 汽车人

原文链接:https://zhuanlan.zhihu.com/p/697604761

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心技术交流群

本文只做学术分享,如有侵权,联系删文

3D 目标检测任务

  1. Better Monocular 3D Detectors with LiDAR from the Past

  2. LET-3D-AP: Longitudinal Error Tolerant 3D Average Precision for Camera-Only 3D Detection

  3. BEVUDA: Multi-Geometric Space Alignments for Domain Adaptive BEV 3D Object Detection

  4. AYDIV: Adaptable Yielding 3D Object Detection Via Integrated Contextual Vision Transformer

  5. Multimodal Object Query Initialization for 3D Object Detection

  6. LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D Object Detection

  7. 2D-3D Object Shape Alignment for Camera-Object Pose Compensation in Object-Visual SLAM

  8. ProEqBEV: Product Group Equivariant BEV Network for 3D Object Detection in Road Scenes of Autonomous Driving

  9. Eliminating Cross-Modal Conflicts in BEV Space for LiDAR-Camera 3D Object Detection

  10. EMIFF: Enhanced Multi-Scale Image Feature Fusion for Vehicle-Infrastructure Cooperative 3D Object Detection

  11. WLST: Weak Labels Guided Self-Training for Weakly-Supervised Domain Adaptation on 3D Object Detection

  12. Towards a Robust Sensor Fusion Step for 3D Object Detection on Corrupted Data

  13. RCM-Fusion: Radar-Camera Multi-Level Fusion for 3D Object Detection

  14. LiRaFusion: Deep Adaptive LiDAR-Radar Fusion for 3D Object Detection

  15. CenterCoop: Center-Based Feature Aggregation for Communication-Efficient Vehicle-Infrastructure Cooperative 3D Object Detection

  16. Talk2BEV: Language-Enhanced Bird's-Eye View Maps for Autonomous Driving

地图构建 Map Construction

  1. BroadBEV: Collaborative LiDAR-Camera Fusion for Broad-Sighted Bird's Eye View Map Construction

  2. MBFusion: A New Multi-Modal BEV Feature Fusion Method for HD Map Construction

  3. RH-Map: Online Map Construction Framework of Dynamic Object Removal Based on 3D Region-Wise Hash Map Structure

  4. AutoMerge: A Framework for Map Assembling and Smoothing in City-Scale Environments

  5. Complementing Onboard Sensors with Satellite Maps: A New Perspective for HD Map Construction

  6. Skeleton Disk-Graph Roadmap: A Sparse Deterministic Roadmap for Safe 2D Navigation and Exploration

语义分割 Semantic Segmentation

  1. Semi-Supervised Learning for Visual Bird's Eye View Semantic Segmentation

  2. One-Vs-All Semi-Automatic Labeling Tool for Semantic Segmentation in Autonomous Driving

  3. Discwise Active Learning for LiDAR Semantic Segmentation

  4. Distribution-Aware Continual Test-Time Adaptation for Semantic Segmentation

  5. PCB-RandNet: Rethinking Random Sampling for LiDAR Semantic Segmentation in Autonomous Driving Scene

  6. Improving Radial Imbalances with Hybrid Voxelization and RadialMix for LiDAR 3D Semantic Segmentation

  7. DefFusion: Deformable Multimodal Representation Fusion for 3D Semantic Segmentation

  8. CMDFusion: Bidirectional Fusion Network with Cross-Modality Knowledge Distillation for LIDAR Semantic Segmentation

  9. Uplifting Range-View-Based 3D Semantic Segmentation in Real-Time with Multi-Sensor Fusion

Occupancy

  1. FastOcc: Accelerating 3D Occupancy Prediction by Fusing the 2D Bird's-Eye View and Perspective View

  2. RenderOcc: Vision-Centric 3D Occupancy Prediction with 2D Rendering Supervision

  3. CVFormer: Learning Circum-View Representation and Consistency Constraints for Vision-Based Occupancy Prediction Via Transformers

  4. OCC-VO: Dense Mapping Via 3D Occupancy-Based Visual Odometry for Autonomous Driving

  5. MonoOcc: Digging into Monocular Semantic Occupancy Prediction

车道线感知

  1. Bi²Lane: Bi-Directional Temporal Refinement with Bi-Level Feature Aggregation for 3D Lane Detection

  2. Augmenting Lane Perception and Topology Understanding with Standard Definition Navigation Maps

  3. Advancements in 3D Lane Detection Using LiDAR Point Clouds: From Data Collection to Model Development

数据集 Dataset

  1. Campus Map: A Large-Scale Dataset to Support Multi-View VO, SLAM and BEV Estimation

  2. Towards Learning-Based Planning: The nuPlan Benchmark for Real-World Autonomous Driving

  3. CC-SGG: Corner Case Scenario Generation Using Learned Scene Graphs

  4. WOMD-LiDAR: Raw Sensor Dataset Benchmark for Motion Forecasting

  5. AD4RL: Autonomous Driving Benchmarks for Offline Reinforcement Learning with Value-Based Dataset

  6. LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D Object Detection

  7. CoAS-Net: Context-Aware Suction Network with a Large-Scale Domain Randomized Synthetic Dataset

投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!

① 全网独家视频课程

BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、cuda与TensorRT模型部署大模型与自动驾驶Nerf语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

c214542d6d8900d3f6a74fb42dbbebf2.png

网页端官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

国内最大最专业,近3000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频

e4e5aad3441fe4622340c13094f6c59e.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦感知、定位、融合、规控、标定、端到端、仿真、产品经理、自动驾驶开发、自动标注与数据闭环多个方向,目前近60+技术交流群,欢迎加入!扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

735851fdd394a55296ff97ffe5d108e8.jpeg

④【自动驾驶之心】全平台矩阵

b4ace4c462bdb67be7619c24c693a0be.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值