作者 | 牛牛牛肉饭 编辑 | 汽车人
原文链接:https://zhuanlan.zhihu.com/p/697604761
点击下方卡片,关注“自动驾驶之心”公众号
戳我-> 领取自动驾驶近15个方向学习路线
本文只做学术分享,如有侵权,联系删文
3D 目标检测任务
Better Monocular 3D Detectors with LiDAR from the Past
LET-3D-AP: Longitudinal Error Tolerant 3D Average Precision for Camera-Only 3D Detection
BEVUDA: Multi-Geometric Space Alignments for Domain Adaptive BEV 3D Object Detection
AYDIV: Adaptable Yielding 3D Object Detection Via Integrated Contextual Vision Transformer
Multimodal Object Query Initialization for 3D Object Detection
LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D Object Detection
2D-3D Object Shape Alignment for Camera-Object Pose Compensation in Object-Visual SLAM
ProEqBEV: Product Group Equivariant BEV Network for 3D Object Detection in Road Scenes of Autonomous Driving
Eliminating Cross-Modal Conflicts in BEV Space for LiDAR-Camera 3D Object Detection
EMIFF: Enhanced Multi-Scale Image Feature Fusion for Vehicle-Infrastructure Cooperative 3D Object Detection
WLST: Weak Labels Guided Self-Training for Weakly-Supervised Domain Adaptation on 3D Object Detection
Towards a Robust Sensor Fusion Step for 3D Object Detection on Corrupted Data
RCM-Fusion: Radar-Camera Multi-Level Fusion for 3D Object Detection
LiRaFusion: Deep Adaptive LiDAR-Radar Fusion for 3D Object Detection
CenterCoop: Center-Based Feature Aggregation for Communication-Efficient Vehicle-Infrastructure Cooperative 3D Object Detection
Talk2BEV: Language-Enhanced Bird's-Eye View Maps for Autonomous Driving
地图构建 Map Construction
BroadBEV: Collaborative LiDAR-Camera Fusion for Broad-Sighted Bird's Eye View Map Construction
MBFusion: A New Multi-Modal BEV Feature Fusion Method for HD Map Construction
RH-Map: Online Map Construction Framework of Dynamic Object Removal Based on 3D Region-Wise Hash Map Structure
AutoMerge: A Framework for Map Assembling and Smoothing in City-Scale Environments
Complementing Onboard Sensors with Satellite Maps: A New Perspective for HD Map Construction
Skeleton Disk-Graph Roadmap: A Sparse Deterministic Roadmap for Safe 2D Navigation and Exploration
语义分割 Semantic Segmentation
Semi-Supervised Learning for Visual Bird's Eye View Semantic Segmentation
One-Vs-All Semi-Automatic Labeling Tool for Semantic Segmentation in Autonomous Driving
Discwise Active Learning for LiDAR Semantic Segmentation
Distribution-Aware Continual Test-Time Adaptation for Semantic Segmentation
PCB-RandNet: Rethinking Random Sampling for LiDAR Semantic Segmentation in Autonomous Driving Scene
Improving Radial Imbalances with Hybrid Voxelization and RadialMix for LiDAR 3D Semantic Segmentation
DefFusion: Deformable Multimodal Representation Fusion for 3D Semantic Segmentation
CMDFusion: Bidirectional Fusion Network with Cross-Modality Knowledge Distillation for LIDAR Semantic Segmentation
Uplifting Range-View-Based 3D Semantic Segmentation in Real-Time with Multi-Sensor Fusion
Occupancy
FastOcc: Accelerating 3D Occupancy Prediction by Fusing the 2D Bird's-Eye View and Perspective View
RenderOcc: Vision-Centric 3D Occupancy Prediction with 2D Rendering Supervision
CVFormer: Learning Circum-View Representation and Consistency Constraints for Vision-Based Occupancy Prediction Via Transformers
OCC-VO: Dense Mapping Via 3D Occupancy-Based Visual Odometry for Autonomous Driving
MonoOcc: Digging into Monocular Semantic Occupancy Prediction
车道线感知
Bi²Lane: Bi-Directional Temporal Refinement with Bi-Level Feature Aggregation for 3D Lane Detection
Augmenting Lane Perception and Topology Understanding with Standard Definition Navigation Maps
Advancements in 3D Lane Detection Using LiDAR Point Clouds: From Data Collection to Model Development
数据集 Dataset
Campus Map: A Large-Scale Dataset to Support Multi-View VO, SLAM and BEV Estimation
Towards Learning-Based Planning: The nuPlan Benchmark for Real-World Autonomous Driving
CC-SGG: Corner Case Scenario Generation Using Learned Scene Graphs
WOMD-LiDAR: Raw Sensor Dataset Benchmark for Motion Forecasting
AD4RL: Autonomous Driving Benchmarks for Offline Reinforcement Learning with Value-Based Dataset
LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D Object Detection
CoAS-Net: Context-Aware Suction Network with a Large-Scale Domain Randomized Synthetic Dataset
投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!
① 全网独家视频课程
BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、大模型与自动驾驶、Nerf、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)
网页端官网:www.zdjszx.com② 国内首个自动驾驶学习社区
国内最大最专业,近3000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频
③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦感知、定位、融合、规控、标定、端到端、仿真、产品经理、自动驾驶开发、自动标注与数据闭环多个方向,目前近60+技术交流群,欢迎加入!扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】全平台矩阵