惊艳!!!特斯拉端到端演示视频分析

作者 | 王峰  编辑 | 3D视觉之心

原文链接:https://zhuanlan.zhihu.com/p/684731944

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心『端到端自动驾驶』技术交流群

本文只做学术分享,如有侵权,联系删文

外网有用户放了一段特斯拉FSD v12的视频,有人搬运到b站上了:

https://www.bilibili.com/video/BV1Z6421M797www.bilibili.com/video/BV1Z6421M797

这次恰好还是纯视觉比较难做的场景:雨天地面有积水,积水反射的各种图案可能会产生一些奇奇怪怪的occupancy。由于特斯拉去年也没有开ai day(说是友商总是一帧一帧地抠他们的ppt,干脆不开了),在没有详细信息的情况下,从视频里可以窥见一些端到端的特性,下面针对其中一些有意思的地方分析一下。

01:57,误检车门打开,大幅度绕行:

256ad2ef91f963b1aa5262dc90ff3623.jpeg

这里倒是问题不大,左侧有比较大的空间,所以多绕一点也无所谓了。

02:09,误检occ导致几乎刹停:

838cca49059ebbf3b0b04385fd21994c.jpeg

这里行人已经走了所以可以起步了,但地面有较多积水,反射地面以上的物体导致occ误检,又停了一会才起步。

04:40,近距离cutin车辆漏检

5b6114b01c846f1b8788ba2ec7584c87.jpeg 1df0aabe1ebeb865771987db8da7bcfa.jpeg

这里左侧非常近距离的倒车cut-in车辆漏检了,但planning似乎并没有给出起步的意图,这里体现出了端到端的一大优势:上游出错的结果并不一定会导致错误的驾驶行为,后面我们还会看到更多类似的例子。

05:37 误检occ

3272f906ba5e3b45eead569937b2d7da.jpeg 04a2923c9389590fc920af8cb06b1a44.jpeg

这里可能也是地面积水产生的occ吧,端到端采信了这个结果,左右乱打方向盘,一会向左一会向右。

05:48,左右近距离occ误检

1f4f4f4cbaac07100ffa29bc9bd11639.jpeg

在左右非常近的位置出现了occ误检,如果还是按规则来写可能就得报接管了(也不一定,毕竟没有在行驶轨迹上),这里端到端直接无视了这两坨occ,继续开。

06:57,正前方近距离行人误检

566f6e99483196ec8e64f95e040dbb23.jpeg

这个是真的牛逼,脸上刷出来一个行人,所有基于规则的规控此时一定会急刹+警报了,但端到端模型并不认可上游的结果,照常行驶。

14分:在一个私人停车场里打转出不去了

991a49eaa90eff091a585b3b8b129fc0.jpeg

这里可能是BEV的感知距离不够的问题,迟迟没有找到出口,在一个停车场里打转。。

其他的片段就都是主路上行驶了,到了主路上FSD v12的表现很丝滑,没有什么大问题,尤其是夜晚看车道线的检测也是非常稳定的,不过我觉得大部分厂家也能做到这样的水平,就不多提了。

单看停车场这一段,如果不看上游的结果的话,除了那个正前方occ误检导致左右乱打方向盘,FSD v12的轨迹还是比较丝滑的,即使有错误也没有被卡住的情况。在这样一个有行人、有不规则移动障碍物(手推车)、地面有积水的场景中表现也确实还可以。

特斯拉使用的还是有中间模块监督的多任务端到端,所以前端仍然可以显示出来obj det和occ的结果。但是端到端里的规控并不一定会采信上游的结果,近距离漏检了不一定会起步撞车,近距离误检了也不一定会刹停,所有的结果都输入到pnc里综合判断。这确实是比较有意思的一点,可以确定的是马斯克并没有说谎,这的确是一个端到端系统才会有的表现。

投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、cuda与TensorRT模型部署大模型与自动驾驶Nerf语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

73e41dd45cc46b2fe87d34ac2a05b243.png 网页端官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

国内最大最专业,近2700人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频

1a0594b0f15803e592ccdef7a22774d5.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦2D/3D目标检测、语义分割、车道线检测、目标跟踪、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、在线地图、点云处理、端到端自动驾驶、SLAM与高精地图、深度估计、轨迹预测、NeRF、Gaussian Splatting、规划控制、模型部署落地、cuda加速、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

36aaeeddf7261dd2810dcc700d21eb8c.jpeg

④【自动驾驶之心】平台矩阵,欢迎联系我们!

5d87233be557d551060b91e84f1b44d1.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值