点击下方卡片,关注“自动驾驶之心”公众号
戳我-> 领取自动驾驶近15个方向学习路线
ECCV 2024放榜有一段时日了!自动驾驶之心一直在做汇总,今天就为大家分享自动驾驶领域相关的优秀工作!
编辑 | 自动驾驶之心
汇总链接:https://github.com/autodriving-heart/ECCV-2024-Papers-Autonomous-Driving
We will promptly include more related works in this repository. Please stay tuned!!!
We also kindly invite you to our platform, Auto Driving Heart, for paper interpretation and sharing. If you would like to promote your work, please feel free to contact me.
1) End to End | 端到端自动驾驶
GenAD: Generative End-to-End Autonomous Driving
paper: https://arxiv.org/pdf/2402.11502
code: https://github.com/wzzheng/GenAD
2)LLM Agent | 大语言模型智能体
DriveLM: Driving with Graph Visual Question Answering
paper: https://arxiv.org/pdf/2312.14150
code: https://github.com/OpenDriveLab/DriveLM
ELM: Embodied Understanding of Driving Scenarios
paper: https://arxiv.org/pdf/2403.04593
code: https://github.com/OpenDriveLab/ELM
Controllable Navigation Instruction Generation with Chain of Thought Prompting
paper: coming soon
code: https://github.com/refkxh/C-Instructor
Asynchronous Large Language Model Enhanced Planner for Autonomous Driving
paper: coming soon
code: coming soon
TOD3Cap: Towards 3D Dense Captioning in Outdoor Scenes
paper: https://arxiv.org/pdf/2403.19589
code: https://github.com/jxbbb/TOD3Cap
Global-Local Collaborative Inference with LLM for Lidar-Based Open-Vocabulary Detection
paper: coming soon
code: https://github.com/GradiusTwinbee/GLIS
3)SSC: Semantic Scene Completion | 语义场景补全
Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion
paper: https://arxiv.org/pdf/2407.02077
code: https://github.com/Arlo0o/HTCL
4)OCC: Occupancy Prediction | 占用感知
Fully Sparse 3D Occupancy Prediction
paper: https://arxiv.org/pdf/2312.17118
code: https://github.com/MCG-NJU/SparseOcc
GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction
paper: https://arxiv.org/pdf/2405.17429
code: https://github.com/huang-yh/GaussianFormer
Occupancy as Set of Points
paper: https://arxiv.org/pdf/2407.04049
code: https://github.com/hustvl/osp
5) World Model | 世界模型
OccWorld: 3D World Model for Autonomous Driving
paper: https://arxiv.org/pdf/2311.16038
code: https://github.com/wzzheng/OccWorld
Modelling Competitive Behaviors in Autonomous Driving Under Generative World Model
paper: coming soon
code: coming soon
DriveDreamer: Towards Real-world-driven World Models for Autonomous Driving
paper: https://arxiv.org/pdf/2309.09777
code: https://github.com/JeffWang987/DriveDreamer
6)HD-Mapping
MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping
paper: https://arxiv.org/pdf/2403.15951
code: https://github.com/woodfrog/maptracker
ADMap: Anti-disturbance framework for reconstructing online vectorized HD map
paper: coming soon
code: https://github.com/hht1996ok/ADMap
Accelerating Online Mapping and Behavior Prediction via Direct BEV Feature Attention
paper: coming soon
code: https://github.com/alfredgu001324/MapBEVPrediction
Leveraging Enhanced Queries of Point Sets for Vectorized Map Construction
paper: https://arxiv.org/pdf/2402.17430
code: https://github.com/HXMap/MapQR
7)Foundation Model
PartGLEE: A Foundation Model for Recognizing and Parsing Any Objects
paper: coming soon
code: coming soon
8)Robust Perception
Rethinking Data Augmentation for Robust LiDAR Semantic Segmentation in Adverse Weather
paper: https://arxiv.org/pdf/2407.02286
code: https://github.com/engineerJPark/LiDAR-DataAug4Weather
R2-Bench: Benchmarking the Robustness of Referring Perception Models under Perturbations
paper: coming soon
code: https://github.com/lxa9867/r2bench
9)3D Object Detection | 三维目标检测
Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance
paper: https://arxiv.org/pdf/2312.07530
code: https://github.com/KuanchihHuang/VG-W3D
GraphBEV: Towards Robust BEV Feature Alignment for Multi-Modal 3D Object Detection
paper: https://arxiv.org/pdf/2403.11848
code: https://github.com/adept-thu/GraphBEV
RecurrentBEV: A Long-term Temporal Fusion Framework for Multi-view 3D Detection
paper: coming soon
code: https://github.com/lucifer443/RecurrentBEV
Ray Denoising: Depth-aware Hard Negative Sampling for Multi-view 3D Object Detection
paper: https://arxiv.org/pdf/2402.03634
code: https://github.com/LiewFeng/RayDN
MonoWAD: Weather-Adaptive Diffusion Model for Robust Monocular 3D Object Detection
paper: coming soon
code: https://github.com/VisualAIKHU/MonoWAD
DualBEV: CNN is All You Need in View Transformation
paper: https://arxiv.org/pdf/2403.05402
code: https://github.com/PeidongLi/DualBEV
OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection
paper: coming soon
code: https://github.com/AlmoonYsl/OPEN
Make Your ViT-based Multi-view 3D Detectors Faster via Token Compression
paper: coming soon
code: coming soon
SEED: A Simple and Effective 3D DETR in Point Clouds
paper: coming soon
code: coming soon
Towards Stable 3D Object Detection
paper: https://arxiv.org/pdf/2407.04305
code: https://github.com/jbwang1997/StabilityIndex
10)Domain Adaptation & Test-Time Adaptation
Enhancing Source-Free Domain Adaptive Object Detection with Low-Confidence Pseudo-Label Distillation
paper: coming soon
code: https://github.com/junia3/LPLD
Fully Test-Time Adaptation for Monocular 3D Object Detection
paper: coming soon
code: https://github.com/Hongbin98/MonoTTA
Progressive Classifier and Feature Extractor Adaptation for Unsupervised Domain Adaptation on Point Clouds
paper: https://arxiv.org/pdf/2303.01276
code: https://github.com/xiaoyao3302/PCFEA
11)Cooperative Perception | 协同感知
Plug and Play: A Representation Enhanced Domain Adapter for Collaborative Perception
paper: coming soon
code: https://github.com/luotianyou349/PnPDA
12)SLAM
13)Scene Flow Estimation | 场景流估计
4D Contrastive Superflows are Dense 3D Representation Learners
paper: coming soon
code: https://github.com/Xiangxu-0103/SuperFlow
14)Point Cloud | 点云
T-CorresNet: Template Guided 3D Point Cloud Completion with Correspondence Pooling Query Generation Strategy
paper: coming soon
code: https://github.com/df-boy/T-CorresNet
15) Efficient Network
16) Segmentation
17)Radar | 毫米波雷达
18)Nerf Gaussian Splatting
Street Gaussians: Modeling Dynamic Urban Scenes with Gaussian Splatting
paper: https://arxiv.org/pdf/2401.01339
code: https://github.com/zju3dv/street_gaussians
MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-View Images
paper: https://arxiv.org/pdf/2403.14627
code: https://github.com/donydchen/mvsplat
GScream: Learning 3D Geometry and Feature Consistent Gaussian Splatting for Object Removal
paper: https://arxiv.org/pdf/2404.13679
code: https://github.com/W-Ted/GScream
BeNeRF: Neural Radiance Fields from a Single Blurry Image and Event Stream
paper: coming soon
code: https://github.com/WU-CVGL/BeNeRF
PreSight: Enhancing Autonomous Vehicle Perception with City-Scale NeRF Priors
paper: https://arxiv.org/pdf/2403.09079
code: https://github.com/yuantianyuan01/PreSight
GaussianImage: 1000 FPS Image Representation and Compression by 2D Gaussian Splatting
paper: https://arxiv.org/pdf/2403.08551
code: https://github.com/Xinjie-Q/GaussianImage
SG-NeRF: Neural Surface Reconstruction with Scene Graph Optimization
paper: coming soon
code: https://github.com/Iris-cyy/SG-NeRF
Disentangled Generation and Aggregation for Robust Radiance Fields
paper: coming soon
code: https://github.com/GaoHchen/Robust-Triplane
19)MOT: Muti-object Tracking | 多物体跟踪
Beyond MOT: Semantic Multi-Object Tracking
paper: coming soon
code: https://github.com/HengLan/SMOT
20)Multi-label Atomic Activity Recognition
21) Motion Prediction | 运动预测
22) Trajectory Prediction | 轨迹预测
23) Depth Estimation | 深度估计
Leveraging Synthetic Data for Real-Domain High-Resolution Monocular Metric Depth Estimation
paper: coming soon
code: https://github.com/zhyever/PatchRefiner
24) Event Camera | 事件相机
25) Odometry
DVLO: Deep Visual-LiDAR Odometry with Local-to-Global Feature Fusion and Bi-Directional Structure Alignment
paper: coming soon
code: https://github.com/IRMVLab/DVLO
Postscript
This list of papers is primarily curated by Rujia Wang.
If you have any questions about the paper list, please do not hesitate to email me and [Auto Driving Heart Team] or open an issue on GitHub.
投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!重磅,自动驾驶之心科研论文辅导来啦,申博、CCF系列、SCI、EI、毕业论文、比赛辅导等多个方向,欢迎联系我们!
① 全网独家视频课程
BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、大模型与自动驾驶、Nerf、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)

② 国内首个自动驾驶学习社区
国内最大最专业,近3000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦感知、定位、融合、规控、标定、端到端、仿真、产品经理、自动驾驶开发、自动标注与数据闭环多个方向,目前近60+技术交流群,欢迎加入!扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】全平台矩阵