【一文看尽最新SOTA轨迹预测网络】2024顶会预测论文和代码汇总

在这里插入图片描述
数据来自:https://github.com/colorfulfuture/Awesome-Trajectory-Motion-Prediction-Papers, 2024轨迹预测相关论文和源代码汇总:

ECCV 2024

Learning Semantic Latent Directions for Accurate and Controllable Human Motion Prediction.

论文:https://arxiv.org/abs/2407.11494

代码:https://github.com/GuoweiXu368/SLD-HMP

MART: MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction.

论文:https://arxiv.org/abs/2407.21635

代码:https://github.com/gist-ailab/MART

Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation.

论文:https://arxiv.org/abs/2408.00374

Project:https://yixiaowang7.github.io/OptTrajDiff_Page/

代码:https://github.com/YixiaoWang7/OptTrajDiff

Progressive Pretext Task Learning for Human Trajectory Prediction.

论文:https://arxiv.org/abs/2407.11588

代码:https://github.com/iSEE-Laboratory/PPT

PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving.

论文:https://arxiv.org/abs/2311.08100

代码:https://github.com/zlichen/PPAD

Scene-aware Human Motion Forecasting via Mutual Distance Prediction.

论文:https://arxiv.org/abs/2310.00615

代码:https://github.com/xccyue/MutualDistance

UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction.

论文:https://arxiv.org/abs/2403.15098

代码:https://github.com

HIVT(Hierarchical Vector Transformer for Multi-Agent Motion Prediction)是一种用于多智能体运动预测的分层向量变换器。该模型使用了向量变换器(Vector Transformer)的层级架构,用于对多智能体的运动轨迹进行预测。 HIVT模型旨在解决多智能体之间相互影响合作的问题。在多智能体系统中,智能体之间的运动行为往往会相互影响,因此准确预测智能体的运动轨迹变得非常重要。传统的方法往往难以捕捉到智能体之间的复杂相互作用外部环境的影响,而HIVT模型通过分层向量变换器的架构,可以更好地捕捉到多智能体系统中的相互作用。 HIVT模型首先使用一个全局的向量变换器来处理整个多智能体系统的运动轨迹,以捕捉全局的趋势相互作用。然后,对于每个智能体,模型使用一个局部的向量变换器来预测其个体的运动轨迹,以考虑个体特定的动态特征周围智能体的影响。 通过分层向量变换器的架构,HIVT模型能够更好地处理多智能体系统中的动态变化相互作用,提高了运动轨迹预测的准确性。同时,该模型还可以应用于多个领域,如智能交通、无人机团队协作等。 总而言之,HIVT模型是一种基于分层向量变换器的多智能体运动预测方法,通过捕捉多智能体系统中的相互作用全局趋势,提高了运动轨迹预测的准确性适用性。该模型在多个领域具有广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值