今年的智驾只有一个声音!端到端+大模型

今年的智驾只有一个声音,那就是端到端+大模型!无论是完全端到端,还是专注于planner的模型,各家公司基本都投入较大人力去研发,小鹏、蔚来、理想、华为都对外展示了其端到端自动驾驶方案,效果着实不错,非常有研究价值。

为什么需要端到端?

首先我们聊一下当前的主流自动驾驶方案,主要核心部分包括:感知模块、预测模块、规控模块。每个模块相对独立,感知模块给预测模块提供动静态障碍物信息;预测模块为规控模块提供规划的参考,规划再转换为控制指令。从传感器端到控制端,需要多个功能支持,这就不可避免导致了累积误差,一旦碰到问题,需要整个pipeline做分析。而且每个模块的优化,并不能保证整个系统达成最优解。

这个时候,就希望有一种模型能够完成感知信息的无损传递,即从传感器端到输出控制策略端,这也是端到端自动驾驶提出的原因。端到端核心是优化最终目标且全局可导,作为一个完整的优化任务来看,直接求最优解,而不是先求感知再求规控的最优解。

可以看出,和以前模块化的方法不同,端到端不再要求算法工程师各自为战,搞感知的就搞感知,搞规控的就搞规控。而是需要全栈!什么都要懂,感知的难点要端到端解!规控的难点也要端到端来解!!那么端到端到底涉及哪些内容呢?今天就带大家一起看下我们『自动驾驶之心知识星球』关于端到端自动驾驶的相关内容和前沿讨论!涉及综述/数据集/前沿算法的汇总、科研界顶级大佬直播、岗位招聘、日常讨论、从业感悟等等,应有尽有~

a9509c9b1712ca2ca6b98c8c6df9901a.png

综述

首先离不开综述的汇总!这些综述系统性的归纳近几年的研究工作并分门别类,很适合小白和找方向的小伙伴:

4a4daf4ea3e604e644941cb4eb88ffa4.png

关键思考和Workshop

其次是一些对于端到端自动驾驶的深入思考及业内最前沿的workshop:

bb3901b028175d3bae2001e149644711.png 705196534b7843a755032b29a3f04d96.png

里程碑算法一览

任何算法的发展离不开一些里程碑的奠基之作:

4234ba6b02078272ea778d459cf2c5b4.png

自动驾驶与视觉大语言模型

端到端与视觉大语言模型的结合也是一大趋势:

f53ba74eb8a622c489be26f51ac540a7.png

世界模型与强化学习相关

自世界模型提出以来,也有相当多端到端世界模型工作:

09f5f995d57a8d83dfe31b87f361c091.png

多传感器融合与端到端

端到端自然也离不开多传感器融合:

fd73b41a1c2b1b88d7a40af4ce6a0a34.png

多任务学习与端到端

多任务学习范式的端到端是当前落地的主流,UniAD便是代表作之一:

e63615a220fb315539e432f2992c5c47.png

BEV与端到端自动驾驶

080a23364be0e6a24718e9d23537cd87.png

其他方向

当然还有很多与端到端自动驾驶相关的方向:

69f3069e329512be6f9134ee9b73c563.png fdcb984980efce278af1d8fbe12d36e2.png 9aa37f6a839241040ef3a7d764d4e96d.png f404d3a6c786410f4d0827c1f6372449.png

日常讨论

也不乏和诸多星友的日常讨论,这里也摘取一些分享:

12e71c26c4100ae9eeecf0413dac98b7.png 32400265cd2b00bc5ac78bab87cc01be.png ee7c64a2cb9c890f4b64d6d8d1b05709.png

招聘信息

当然也少不了一手的招聘信息!

c166f6892593e0638664a61b0025307a.png

直播分享

更有顶级大佬的直播分享:

e1d10f7d336aa7a78b343bd5a26d06b5.png 417a424fb36d57990286a794bf4664eb.png

以上内容均摘自『自动驾驶之心知识星球』,欢迎加入与4000名从业人员一起变的更强!

4af1eab9bf023ea22b05e47bbbfd212e.png
内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
### 端到端自动驾驶大模型中的“端到端”概念解释 #### 定义与特点 在自动驾驶领域,“端到端”的核心在于将传感器数据直接映射至车辆控制指令,形成一个完整的闭环系统。这种架构允许从原始输入(如摄像头图像、雷达信号等)直接生成最终输出(转向角度、加速度等),而无需显式的中间表示或分阶段处理[^1]。 #### 结构优势 相比于传统模块化设计方法,“端到端”方式具有显著的优势: - **简化流程**:减少了多个独立组件之间的复杂交互; - **全局优化**:可以在整个系统层面进行联合调优,而不是针对单个部分分别调整; - **增强鲁棒性**:通过学习整体行为模式而非孤立特征,提高了应对未知情况的能力[^2]。 然而值得注意的是,“端到端”并不意味着必须依赖大规模预训练模型。“端到端”更多是指结构上保持梯度传导的一致性和支持全局范围内的最优化求解路径。 #### 应用实例 具体来说,在实际应用中,“端到端”框架能够实现实时环境感知、场景理解和行动预测等功能于一体。例如,最新提出的UniAD就是一个典型的例子,它不仅涵盖了从视觉信息获取到决策制定全过程,而且还特别强调了对周围物体位置关系的理解以及对未来行驶路线的推测能力。 ```python def end_to_end_autonomous_driving(input_data): """ Simulate an end-to-end autonomous driving model. Args: input_data (list): Raw sensor inputs like camera images, LiDAR points etc. Returns: tuple: Control commands including steering angle and acceleration value. """ perception_output = perceive_environment(input_data) scene_description = describe_scene(perception_output) future_actions = predict_future(scene_description) return generate_control_commands(future_actions) if __name__ == "__main__": raw_sensors_input = ["camera_image", "lidar_points"] control_signals = end_to_end_autonomous_driving(raw_sensors_input) print(control_signals) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值