具身智能端到端大模型VLA (Vision Language Action)

VLA模型最早见于机器人行业。2023年7月28日,谷歌DeepMind发布了全球首个控制机器人的视觉语言动作(VLA)模型RT-2。其后,这个模型概念快速扩散到智驾领域。

VLA模型是在视觉语言模型(VLM)的基础上发展而来的。VLM是一种能够处理图像和自然语言文本的机器学习模型,它可以将一张或多张图片作为输入,并生成一系列标记来表示自然语言。然而,VLA不仅限于此,它还利用了机器人或汽车运动轨迹的数据,进一步训练这些现有的VLM,以输出可用于机器人或汽车控制的动作序列。通过这种方式,VLA可以解释复杂的指令并在物理世界中执行相应的动作。

从单模态模型到多模态模型的演变,为 VLA 模型的引入奠定了基础。

计算机视觉领域的关键进步(蓝色)包括 ResNet [85]、ViT [86] 和 SAM [87]。

自然语言处理领域的开创性工作(橙色)包括 GRU [88]、Transformer [66]、BERT [89]、ChatGPT [62] 等。

强化学习(绿色)中,DQN [90]、AlphaGo [91]、PPO [92]、Dactyl [93] 和 DT [94] 做出了显著贡献。

视觉语言模型已成为多模态模型的重要类别,例如 ViLBERT [95]、CLIP [1] 和 LLaVA [96]。VLA 的三个主要方向是:预训练、控制策略和任务规划器。

端到端大模型2.0 - VLA (Vision Language Action) 是一种先进的多模态机器学习模型,它结合了视觉、语言和动作三种能力,旨在实现从感知输入直接映射到机器人控制动作的完整闭环能力。这一技术的发展标志着自动驾驶和其他智能系统向更加自主化迈进的重要一步。VLA模型被开发用于解决具身智能中的指令跟随任务。与以ChatGPT为代表的聊天AI不同,具身智能需要控制物理实体并与环境交互。机器人是具身智能最突出的领域。在语言为条件的机器人任务中,策略必须具备理解语言指令、视觉感知环境并生成适当动作的能力,这就需要VLA的多模态能力

VLA的特点与优势

1. 端到端架构

首先,VLA是一个端到端的大模型,这意味着它可以简化传统上需要多个独立模块才能完成的任务流程。例如,在自动驾驶领域,传统的做法是将感知、预测、规划等步骤分开处理,而VLA则试图用一个统一的框架来替代这种分立的方法。这不仅可以提高系统的效率,还能增强其灵活性和适应性。

2. 泛化能力

其次,VLA具有强大的泛化能力。以谷歌DeepMind推出的RT-2为例,该模型可以在新的物体、背景和环境中表现出显著改善的性能。它可以理解并响应那些在训练数据集中未曾出现过的命令,并基于底层语言模型提供的思路链进行推理,从而做出

内容概要:本文全面综述了视觉-语言-动作(Vision-Language-Action, VLA)模型的最新进展,涵盖其概念基础、发展历史、多模态融合技术、学习范式、自适应控制与实时执行等方面。文章系统地分析了VLA模型在过去三年中的架构创新、训练效率提升以及参数高效的优化方法。此外,还探讨了VLA模型在人形机器人、自动驾驶汽车、工业机器人、医疗机器人、精准农业和增强现实导航等多个领域的应用,并指出了当前面临的挑战,如实时推理约束、多模态动作表示与安全性保障、数据集偏差与泛化能力、系统集成复杂性和计算需求、环境鲁棒性和伦理问题。作者提出了针对性的解决方案,包括代理AI适应、跨实体泛化和统一的神经符号规划,并展望了未来的发展方向,即VLA模型、视觉-语言模型(VLMs)和代理AI将共同推动智能通用机器人和自主系统的进步。 适合人群:对人工智能、机器人技术和多模态学习感兴趣的科研人员、工程师及相关领域的研究生。 使用场景及目标:①理解VLA模型如何整合视觉、语言理解和动作生成,实现端到端的机器人任务执行;②掌握VLA模型在不同应用场景中的具体实现和技术细节;③识别并解决VLA模型在实际部署中面临的关键挑战,如实时性能、安全性和泛化能力。 阅读建议:本文提供了丰富的背景知识和前沿研究,建议读者首先理解VLA模型的基本概念和发展历程,然后重点关注其在各领域中的具体应用和挑战。对于技术细节部分,可以结合图表和公式进行深入学习,以便更好地掌握VLA模型的设计原理和优化方法。
03-15
<think>好的,用户的问题是关于编程中的变长数组(Variable-Length Array,VLA)。首先,我需要明确变长数组的定义和特点。变长数组是在程序运行时确定大小的数组,这与传统的静态数组不同,静态数组的大小在编译时就必须确定。 接下来,我需要回顾变长数组在不同编程语言中的支持情况。比如,C语言在C99标准中引入了VLA,但后来的C11标准将其改为可选特性。而C++并不支持VLA,但可以使用动态分配或容器如std::vector来实现类似功能。其他语言如Java、C#和Python的动态数组实现方式可能不同,需要分别说明。 然后,要考虑变长数组的优缺点。优点包括栈内存分配带来的可能的性能优势,以及避免手动内存管理的便利。缺点则涉及栈溢出风险、可移植性问题,以及C11之后支持的不确定性。 用户提供的引用资料中,引用[3]提到了C中的变长数组,这需要重点讨论。同时,引用[2]中的Python代码示例可能与动态数组有关,但Python的列表本身就是动态的,与VLA不同,需要区分清楚。 需要确保回答结构清晰,分点阐述定义、特点、语言支持、优缺点和应用场景。同时,生成的相关问题要覆盖实现原理、语言对比、安全问题、替代方案和性能分析等方面,以帮助用户全面理解。 最后,检查LaTeX格式是否正确,所有行内数学表达式用$...$,独立公式用$$...$$,并正确引用提供的参考资料。确保回答用中文,符合用户的要求。</think>### 变长数组(Variable-Length Array, VLA)详解 #### 1. **定义与特点** 变长数组(VLA)是一种在程序运行时动态确定长度的数组。其大小由变量或表达式决定,而非编译时的常量。例如,在C语言中: ```c int n = 10; int arr[n]; // 变长数组,n为运行时变量 ``` 对比静态数组(如`int arr[10];`),VLA允许更灵活的存储分配[^3]。 #### 2. **语言支持与实现** - **C语言**:C99标准引入VLA,但C11中改为可选特性。使用栈内存分配,可能导致栈溢出风险。 - **C++**:不支持VLA,但可通过`std::vector`或动态内存分配(`new`/`malloc`)实现类似功能。 - **其他语言**:Python的`list`、Java的`ArrayList`本质为动态数组,但实现方式与VLA不同(基于堆内存)。 #### 3. **优点与局限** - **优点**: - 避免手动内存管理(如`malloc`/`free`)。 - 栈分配速度快于堆分配(适用于小规模数据)。 - **缺点**: - 栈空间有限,大数组可能溢出。 - 可移植性差(C11后非强制支持)。 - 无法在结构体或全局作用域中使用。 #### 4. **典型应用场景** - 临时存储用户输入(如动态读取行数据)。 - 数学计算中动态维度矩阵运算(需谨慎控制规模)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值