具身智能端到端大模型VLA (Vision Language Action)

VLA模型最早见于机器人行业。2023年7月28日,谷歌DeepMind发布了全球首个控制机器人的视觉语言动作(VLA)模型RT-2。其后,这个模型概念快速扩散到智驾领域。

VLA模型是在视觉语言模型(VLM)的基础上发展而来的。VLM是一种能够处理图像和自然语言文本的机器学习模型,它可以将一张或多张图片作为输入,并生成一系列标记来表示自然语言。然而,VLA不仅限于此,它还利用了机器人或汽车运动轨迹的数据,进一步训练这些现有的VLM,以输出可用于机器人或汽车控制的动作序列。通过这种方式,VLA可以解释复杂的指令并在物理世界中执行相应的动作。

从单模态模型到多模态模型的演变,为 VLA 模型的引入奠定了基础。

计算机视觉领域的关键进步(蓝色)包括 ResNet [85]、ViT [86] 和 SAM [87]。

自然语言处理领域的开创性工作(橙色)包括 GRU [88]、Transformer [66]、BERT [89]、ChatGPT [62] 等。

强化学习(绿色)中,DQN [90]、AlphaGo [91]、PPO [92]、Dactyl [93] 和 DT [94] 做出了显著贡献。

视觉语言模型已成为多模态模型的重要类别,例如 ViLBERT [95]、CLIP [1] 和 LLaVA [96]。VLA 的三个主要方向是:预训练、控制策略和任务规划器。

端到端大模型2.0 - VLA (Vision Language Action) 是一种先进的多模态机器学习模型,它结合了视觉、语言和动作三种能力,旨在实现从感知输入直接映射到机器人控制动作的完整闭环能力。这一技术的发展标志着自动驾驶和其他智能系统向更加自主化迈进的重要一步。VLA模型被开发用于解决具身智能中的指令跟随任务。与以ChatGPT为代表的聊天AI不同,具身智能需要控制物理实体并与环境交互。机器人是具身智能最突出的领域。在语言为条件的机器人任务中,策略必须具备理解语言指令、视觉感知环境并生成适当动作的能力,这就需要VLA的多模态能力

VLA的特点与优势

1. 端到端架构

首先,VLA是一个端到端的大模型,这意味着它可以简化传统上需要多个独立模块才能完成的任务流程。例如,在自动驾驶领域,传统的做法是将感知、预测、规划等步骤分开处理,而VLA则试图用一个统一的框架来替代这种分立的方法。这不仅可以提高系统的效率,还能增强其灵活性和适应性。

2. 泛化能力

其次,VLA具有强大的泛化能力。以谷歌DeepMind推出的RT-2为例,该模型可以在新的物体、背景和环境中表现出显著改善的性能。它可以理解并响应那些在训练数据集中未曾出现过的命令,并基于底层语言模型提供的思路链进行推理,从而做出

<think>好的,用户现在问的是目前最好的VLA模型,也就是视觉语言动作模型。我需要先确认VLA的具体定义,因为可能有不同的解释。通常VLA指的是结合视觉、语言和动作的模型,用于机器人或其他智能体,能够根据视觉和语言输入生成动作。不过有时候可能会有不同的缩写,比如Vision-Language-Action,但需要确保准确。 接下来,我需要回顾当前最先进的模型。例如,Google的RT-2(Robotic Transformer 2)和Meta的VC-1(可能是某个模型),还有OpenAI的GPT-4结合机器人控制的部分。此外,DeepMind的RoboCat也可能相关。需要确认这些模型是否属于VLA范畴,并比较它们的性能、应用场景以及优缺点。 然后要考虑用户的需求。用户可能对机器人领域感兴趣,之前讨论过机器人领域的概况,现在想深入技术细节。用户可能是研究人员、学生或工程师,希望了解当前最先进的模型以便进一步研究或应用。需要判断用户是否需要技术细节、比较,还是更关注应用案例。 还要注意是否有最新的模型发布,比如2023年下半年或2024年的新进展,比如RT-2是在2023年7月发布的,可能目前仍然是领先的。需要确保信息的时效性。同时,可能需要解释VLA模型的基本结构,比如如何整合视觉、语言和动作模块,是否端到端训练等。 另外,用户可能对“最好”的定义有不同的标准,比如泛化能力、计算效率、实际应用中的表现等,需要明确说明这些模型的优势所在。例如,RT-2强调从网络数据中学习,提升泛化能力,而RoboCat通过多任务学习提高适应性。 需要组织回答的结构,可能分为模型介绍、关键技术、应用场景、挑战与未来方向。同时,要使用用户熟悉的术语,但避免过于晦涩,保持解释清晰。可能还需要提到开源项目,比如Open X-Embodiment,作为资源供用户参考。 最后,检查是否有遗漏的重要模型或信息,确保覆盖主流和最新的研究成果,并保持回答的客观性,指出不同模型的适用场景和限制,帮助用户根据自身需求选择合适的模型。</think>视觉-语言-动作模型(Vision-Language-Action, VLA)是近年来机器人领域的前沿方向,旨在将视觉感知、语言理解和动作决策整合到一个统一框架中,使机器人能够通过自然语言指令理解任务目标,结合视觉输入自主规划动作。以下是目前该领域的代表性模型及其技术特点: --- ### **1. 当前领先的VLA模型** #### **(1) RT-2(Robotic Transformer 2)** - **开发者**:Google DeepMind(2023年7月发布) - **核心能力**: - 基于视觉-语言大模型(如PaLM-E)的扩展,直接从图像和文本输入生成机器人动作指令。 - 利用互联网规模的视觉-语言数据预训练,显著提升泛化能力(例如从未见过的任务成功率提升3倍)。 - 支持零样本(zero-shot)任务执行,如“将可乐罐扔进回收箱”。 - **优势**:端到端学习,无需传统手工编程的动作规则,适应开放场景。 #### **(2) RoboCat** - **开发者**:DeepMind(2023年6月发布) - **核心能力**: - 首个能通过自我训练快速学习新任务的通用机器人模型。 - 基于多模态模型架构,结合视觉、语言和动作数据,可在不同机械臂上迁移学习。 - 仅需100次演示即可学会新任务(如堆叠积木)。 -1)** - **开发者**:Meta AI(2023年) - **核心能力**: - 通过统一表征学习(Unified Representation)将视觉和动作编码到同一空间。 - 支持跨任务(如抓取、导航)和跨机器人平台(如无人机、机械臂)的泛化。 - **优势**:模块化设计,易于适配不同机器人形态。 #### **(4) GPT-4 + 机器人系统** - **开发者**:OpenAI与第三方合作(如Figure 01人形机器人) - **核心能力**: - 将GPT-4的推理能力与机器人动作控制结合,通过语言指令解析复杂任务(如“整理桌子并解释步骤”)。 - 依赖额外模块(如视觉编码器、动作规划器)完成闭环控制。 - **优势**:语言理解能力极强,适合人机协作场景。 --- ### **2. 关键技术突破** - **多模态对齐**:将视觉、语言和动作映射到同一语义空间(如通过对比学习)。 - **仿真到现实迁移**:利用大规模仿真训练(如NVIDIA Isaac Sim)降低真实环境数据需求。 - **层级化决策**:将任务分解为“语言理解→视觉定位→动作序列生成”的层级结构。 - **记忆与上下文学习**:通过Transformer架构实现长时任务记忆(如持续多步骤操作)。 --- ### **3. 应用场景** - **家庭服务**:执行“把脏衣服放进洗衣机并启动”等自然语言指令。 - **工业柔性生产**:快速适应新产品装配任务(如手机零件组装)。 - **医疗辅助**:根据医生语音指令操作手术器械。 - **灾难救援**:通过指令控制机器人进入危险区域搜救。 --- ### **4. 挑战与局限** - **数据稀缺**:真实机器人动作数据获取成本高,依赖仿真补充。 - **安全性与可靠性**:开放环境中意外干扰(如光线变化、物体移动)可能引发错误动作。 - **计算成本**:实时运行需平衡模型规模与计算效率(如RT-2需约10Hz控制频率)。 --- ### **5. 未来方向** - **开源社区推动**:如Open X-Embodiment项目整合多机构机器人数据集。 - **具身智能(Embodied AI)**:让模型通过物理交互主动学习,而非被动接受数据。 - **低成本硬件适配**:轻量化模型部署至消费级机器人(如家庭陪伴机器人)。 --- 目前,**RT-2和RoboCat**在学术界和工业界认可度较高,但实际落地需结合具体场景(如工业场景更关注可靠性,家庭场景需侧重安全与交互)。若需进一步探讨某模型的技术细节或应用案例,可继续深入讨论!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值