作者 | James的AI科研路 编辑 | 自动驾驶之心
原文链接:https://zhuanlan.zhihu.com/p/19776850516
点击下方卡片,关注“自动驾驶之心”公众号
戳我-> 领取自动驾驶近15个方向学习路线
本文只做学术分享,如有侵权,联系删文
如题,这次CVPR审稿分了四篇论文,全部都是我熟悉的领域,其中有三篇都是引用了我之前的论文并在实验上进行了直接对比,额外的一篇也是我目前正在做的方向,所以这些领域我都很熟,评价起来很容易,方法常见套路、idea能从哪些方面展开、该用哪些benchmark门清,最后结果就是3、3、3、2(2其实一开始打的1,后来想着还是给点机会改2了)。这次CVPR审稿体会还是蛮深的,分享几点感悟,和大家一起交流交流
刚好这周小班课开始讲论文写作✍️,第一件事儿就是让大家搞懂顶会审稿人的真实打分逻辑,这样才能知己知彼,一次就中,免得浪费时间⏳。我也回顾下2024一整年,从 ACM MM 2024 ➡️ NeurIPS 2024 ➡️ ICLR 2025 ➡️ AAAI2025 ➡️ 现在的CVPR2025,再算上IJCV TIP TPAMI的审稿,总共接近20篇论文,我自己也慢慢形成了一套审稿流程和一丢丢的taste,到底什么样的文章能一次就中顶会,在这儿先简单说下。
大致审稿流程 :
先看题目,摘要和引言
引言部分的teaser图会重点看,看是否把文章的main idea或者卖点说清楚了,引言部分的故事逻辑和动机是重点,动机强不强,直接决定我买不买账
相关工作
如果熟悉,会直接跳过;不熟悉,会当背景快速过一遍,补充下,看看这篇论文跟其他文章有哪些不同
方法框架图和整体流程
然后跳到实验部分,看方法效果是否突出,对比是否公平,消融实验是否全面,可视化分析有没有做到位
最后回到方法细节
具体的loss设计、小模块设计,有没有明显不合理的地方 ,这一整套下来,基本就有个整体的分数判断了,就可以开始写审稿意见了
写意见的过程
也会再回顾论文的某些部分,来double check细节和自己的理解对不对
所以总体而言,这一套流程下来,一篇文章至少会读2遍,普遍读3遍,意见也就写的差不多了,就可以跟AC交差了
这次四篇论文的整体情况 :
这次审稿论文ID从4XX,到14XXX,跨度很大,所有的文章都用了LLM/VLM/VFM等基础模型作为主要或次要卖点,每篇论文都有亮点,也都有不足,这些不足也都很有代表性,下面简单展开下,方便写作新手或者第一次投稿顶会的薯薯借鉴和提前规避⚠️。
Overclaim
Overclaim是我一开始投稿CVPR时审稿人给我的反馈,当时还一直在揣摩,为啥审稿人会这么说?是我的实验漏掉了部分,还是我的效果不够有说服力?这点其实是个很主观的评价,作为作者,唯一能做的就是根据你的方法和实验,来总结你的贡献,确保你所claim的每个点都能在方法或者实验里得到印证,有相应的evidence可以support,这点非常重要。
所以写贡献要小心谨慎,你多说一个点,多加一个词,可能都会引起审稿人的夺命连环问,到时候你会为此付出代价,或者要多补一堆实验,其中一篇审稿,我列了四块儿实验,我希望在rebuttal的时候看到,就看作者能不能完成了,我会根据新的实验结果来决定要不要提分。
实验不充分
实验不充分是我审稿的三篇论文没能拿到weak accept的主要原因,这几篇多多少少都有实验上的问题。
有的是关键模块的消融只是很粗糙的做了下,有的是论文涨了很多点,也对比了足够多的方法和测了足够多的benchmark,但因为方法过于简单,简单到几乎说不出新意,很明显的A+B的味道,作者又没有进一步的分析和消融,我不知道他的效果提升到底是来源于引入foundation model本身,还是作者自己的额外设计,甚至是来自于多个数据集的co-training,这些都没有消融来验证,所以我看在效果和开源了匿名代码的份上,给了3分,也给了机会看rebuttal。
一个共性问题都没有给一些failure case和limitation的讨论,每篇工作肯定有亮点,也有不能做的,如果作者能清晰区分亮点和方法的边界,并给出一些例子和改进思路,我会认为作者的思考会比较全面和深入,反而可以会打高分,可惜的是,三篇论文都没有这部分内容。
动机不清晰
这是当前大模型时代写科研论文很多新手的通病,LLM/VLM/VFM/Diffusion Model这些foundation model大家论文里都会用,它们的确有很多优势,但到底有啥优势是适合你的某个或者某些任务,或者为什么能用它们来做某个新任务,你需要给出合理且清晰的动机。
但我在我审的一篇用LLM来做下游任务的稿子,我并没有看出清晰的动机。整个给人的感觉就是,你看没有用llm做过这个任务,那我就来试试,然后提了些模块,发现效果不错,就投稿了,有种拿着 到处找钉子的感觉,诶,发现这个钉子还挺合适,就敲一下,成功了,就开始写论文,就感觉CVPR有了。
llm本质上到底适不适合做这个任务也没说,他能做成的原因我也不知道,读完一头雾水,方法设计也就是给llm前后包个encoder和decoder,再加上效果也没好哪去,还不如一些其他方案,一顿操作猛如虎,最后涨点0.5,我最后忍着给了2分…估计也是第一次投稿,稍微给Ta点信心,毕竟大家都是从新手阶段过来的。
总结
这次CVPR2025也辅导了两个学弟,我给他们写intro的时候,都会把我上面列的这几点一个个规避掉,在实验和方法的已有基础上,尽量拔高或者清晰明了,直指本质,目的就是站在审稿人的角度来帮他们最快的理解论文的精华和动机,最终再试图得到审稿人的认可,最终让他们给出高分,还有两天就要出结果了,let’s see!
重磅!自动驾驶论文辅导来啦!
自动驾驶之心论文辅导正式推出了,近2000+师资!如果您是大模型、VLA、端到端自动驾驶、3DGS、BEV感知、目标跟踪、毫米波雷达视觉融合、激光视觉融合、多传感器标定、多传感器融合、车道线检测、在线地图、轨迹预测、世界模型、3D目标检测、Occupancy、高性能计算、NeRF、语义分割、决策规划、SLAM等方向,如果你有任意论文发表需求,支持带课题/研究方向咨询,欢迎联系我们。
中标率很高哦!论文中已有多篇被TPAMI、CVPR、ICCV、AAAI、ICML、NIPS、ECCV、IJCAI、IROS、ICRA、ACL等顶会顶刊收录。
根据不同论文级别,辅导价格不同,具体如下:
自动驾驶顶会/顶刊,CCF-A、CCF-B、CCF-C等;
SCI一区~四区;
中科院1区,2区,3区,4区;
EI/中文核心;
毕设论文/申博/比赛等;
