2025端到端自动驾驶前瞻:30+技术文章汇总!开卷端到端2.0时代~

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

随着科技浪潮推动自动驾驶迈向新高度,端到端自动驾驶技术不断涌现创新成果。在此,我们深入剖析 30 项关键技术,融合学术深度与市场潜力,为您呈现一幅全面且极具吸引力的自动驾驶技术全景图,开启智能交通新时代的探索之旅。本文内容均出自『自动驾驶之心知识星球』,欢迎加入交流,这里已经汇聚了近4000名自动驾驶从业人员,每日分享前沿技术、行业动态、岗位招聘、大佬直播等一手资料!

b9361bde6674c8aec571e09310b7c30f.jpeg

1、 题目: Generative Planning with 3D-vision Language Pre-training for End-to-End Autonomous Driving

链接: https://t.zsxq.com/GfgiU

简介: 基于3D视觉语言预训练的端到端自动驾驶规划生成

时间: 2025-01-16T23:41:03.107+0800

2、 题目: VLM-AD: End-to-End Autonomous Driving through Vision-Language Model Supervision

链接: https://t.zsxq.com/waJEA

简介: VLM-AD: 基于视觉语言模型监督的端到端自动驾驶

时间: 2024-12-21T10:40:06.378+0800

3、 题目: GenAD: Generative End-to-End Autonomous Driving

链接: https://t.zsxq.com/2LcNC

简介: GenAD:一种新的端到端自动驾驶范式

时间: 2024-02-20T23:01:28.229+0800

4、 题目: OpenEMMA: Open-Source Multimodal Model for End-to-End Autonomous Driving

链接: https://t.zsxq.com/nXHT8

简介: OpenEMMA,一个基于多模态大语言模型的开源端到端框架

时间: 2024-12-20T21:18:39.772+0800

5、 题目: Bench2Drive-R: Turning Real World Data into Reactive Closed-Loop Autonomous Driving Benchmark by Generative Model

链接: https://t.zsxq.com/534Ra

简介: Bench2Drive-R: 通过生成模型将现实世界数据转化为反应式闭环自动驾驶基准

时间: 2024-12-17T23:48:37.155+0800

6、 题目: WiseAD: Knowledge Augmented End-to-End Autonomous Driving with Vision-Language Model

链接: https://t.zsxq.com/2qotM

简介: WiseAD:基于视觉语言模型的知识增强端到端自动驾驶

时间: 2024-12-17T23:05:25.418+0800

7、 题目: Doe-1: Closed-Loop Autonomous Driving with Large World Model

链接:https://t.zsxq.com/nKyXO

简介: 统一感知、预测和规划!大型驾驶世界模型Doe-1来了

时间: 2024-12-13T11:32:30.902+0800

8、 题目: Preliminary Investigation into Data Scaling Laws for Imitation Learning-Based End-to-End Autonomous Driving

链接: https://t.zsxq.com/CQr4Q

简介: 基于模仿学习的端到端自动驾驶数据缩放规律初探

时间: 2024-12-04T20:12:01.970+0800

9、 题目: Senna: Bridging Large Vision-Language Models and End-to-End Autonomous Driving

链接: https://t.zsxq.com/4Soii

简介: Senna: 一种将LVLM(Senna-VLM)与端到端模型(Senna-E2E)相结合的自动驾驶系统

时间: 2024-10-30T20:55:45.010+0800

10、 题目: On Camera and LiDAR Positions in End-to-End Autonomous Driving

链接: https://t.zsxq.com/Zhw7R

简介: 相机和Lidar的位置对端到端自动驾驶有什么影响?

时间: 2024-10-25T18:54:33.755+0800

11、 题目: VADv2: End-to-End Vectorized Autonomous Driving via Probabilistic Planning

链接:https://t.zsxq.com/u6fm1

简介: VADv2来了!一种基于概率规划的端到端驾驶模型

时间: 2024-02-21T21:14:08.569+0800

12、 题目: End-to-end Driving in High-Interaction Traffic Scenarios with Reinforcement Learning

链接: https://t.zsxq.com/ZT2Wx

简介: Ramble:具有强化学习的高交互交通场景中的端到端驾驶

时间: 2024-10-12T19:52:27.580+0800

13、 题目: An Efficient Imitation Agent for End-to-End Autonomous Driving in Simulated Environments

链接: https://t.zsxq.com/7HcyJ

简介: 分享一种在模型大小、训练时间和所需数据集大小方面更简单、更高效的模型。它是完全端到端训练的,唯一的传感器输入是来自80°挡风玻璃摄像头的512×256图像。

时间: 2024-10-12T19:44:50.733+0800

14、 题目: End-to-End Autonomous Driving in CARLA : A Survey

链接: https://t.zsxq.com/IEia1

简介: CARLA中的端到端自动驾驶全面综述

时间: 2024-10-09T21:08:39.800+0800

15、 题目: HE-Drive: Human-Like End-to-End Driving with Vision Language Models

链接: https://t.zsxq.com/csf0x

简介: nuScenes 和 OpenScene 最新SOTA! 可提供最舒适的驾驶体验!HE-Drive:首个类人端到端自动驾驶系统

时间: 2024-10-08T21:07:14.578+0800

16、 题目: PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving

链接: https://t.zsxq.com/BeMRO

简介: 端到端预测和规划最新SOTA!一种用于端到端自动驾驶的新交互机制:PPAD

时间: 2024-10-06T23:27:02.313+0800

17、 题目: Does End-to-End Autonomous Driving Really Need Perception Tasks?

链接: https://t.zsxq.com/RKw4b

简介: 端到端自动驾驶真的需要感知任务吗?

时间: 2024-10-01T11:04:26.034+0800

18、 题目: RenderWorld: World Model with Self-Supervised 3D Label

链接:https://t.zsxq.com/n8wLc

简介: 具有自监督3D标签的世界模型!RenderWorld: 一种基于视觉的端到端自动驾驶框架

时间: 2024-09-19T00:05:59.381+0800

19、 题目: RobustE2E: Exploring the Robustness of End-to-End Autonomous Driving

链接: https://t.zsxq.com/NBIv7

简介: RobustE2E: 对四种端到端自动驾驶系统在各种噪声下的鲁棒性进行了详细分析

时间: 2024-08-20T23:40:54.218+0800

20、 题目: Exploring the Causality of End-to-End Autonomous Driving

链接: https://t.zsxq.com/VUJCb

简介: 首次揭开端到端自动驾驶的神秘面纱!

时间: 2024-07-25T21:43:58.446+0800

21、 题目: End-to-End Autonomous Driving without Costly Modularization and 3D Manual Annotation

链接: https://t.zsxq.com/u7eHF

简介: nuScenes开环SOTA! UAD:一种基于视觉的端到端自动驾驶方法

时间: 2024-06-26T23:18:35.687+0800

22、 题目: NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking

链接: https://t.zsxq.com/o1HEy

简介: NAVSIM: 数据驱动的非反应自动驾驶仿真和基准测试

时间: 2024-06-24T22:26:46.103+0800

23、 题目: Enhancing End-to-End Autonomous Driving with Latent World Model

链接: https://t.zsxq.com/8PAfY

简介: 谭铁牛院士团队新作:无需昂贵标注,增强端到端自动驾驶

时间: 2024-06-13T21:09:29.465+0800

24、 题目: DUALAD: Disentangling the Dynamic and Static World for End-to-End Driving

链接: https://t.zsxq.com/qYOT9

简介: DualAD不仅优于独立训练的单任务网络,而且在所有驾驶功能链任务上也大幅超越了先前最先进的端到端模型

时间: 2024-06-12T00:04:21.048+0800

25、 题目:基于视频世界模型的闭环端到端自动驾驶——陈韫韬

链接: https://t.zsxq.com/PXy6O

简介: 1、自动驾驶中信息利用的新趋势 2、闭环端到端驾驶的概念 3、端到端驾驶与生成世界模型

时间: 2024-05-29T23:48:02.487+0800

26、 题目: SparseAD: Sparse Query-Centric Paradigm for Efficient End-to-End Autonomous Driving

链接: https://t.zsxq.com/8EE91

简介: 端到端全任务最新SOTA! SparseAD: 高效端到端自动驾驶的稀疏query中心范式

时间: 2024-04-11T23:57:00.716+0800

27、 题目: HENet: Hybrid Encoding for End-to-end Multi-task 3D Perception from Multi-view Cameras

链接: https://t.zsxq.com/vCrLc

简介: HENet:多视图相机端到端多任务3D感知的混合编码网络

时间: 2024-04-04T23:54:19.822+0800

28、 题目: Integrating Modular Pipelines with Endto-End Learning: A Hybrid Approach for Robust and Reliable Autonomous Driving Systems

链接: https://t.zsxq.com/YWL6j

简介: 模块化pipeline与端到端学习的集成:一种鲁棒可靠的自动驾驶系统的混合方法

时间: 2024-02-15T11:46:22.779+0800

29、 题目: DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving

链接: https://t.zsxq.com/HA9BK

简介: DriveCoT:一个全面的端到端驾驶数据集

时间: 2024-03-27T08:32:36.068+0800

30、 题目: M2DA: Multi-Modal Fusion Transformer Incorporating Driver Attention for Autonomous Driving

链接: https://t.zsxq.com/3QxuN

简介: M2DA: 一种结合驾驶员注意力的多模态融合Transformer

时间: 2024-03-20T19:11:42.747+0800

端到端自动驾驶不仅是学术研究的前沿领域,更是未来智能交通的核心驱动力。通过对知识星球精选帖子的分析,我们看到了技术的突破与创新,同时也洞察到了巨大的商业潜力。无论是科研机构还是企业,都能从这些研究中找到未来发展的方向。自动驾驶的未来已来,让我们共同期待这一技术为人类出行带来的变革!

『自动驾驶之心知识星球』近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(端到端自动驾驶、世界模型、仿真闭环、2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎扫描加入

eb56e84ab6e78e2341438cf3872ae8b8.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值