点击下方卡片,关注“自动驾驶之心”公众号
随着科技浪潮推动自动驾驶迈向新高度,端到端自动驾驶技术不断涌现创新成果。在此,我们深入剖析 30 项关键技术,融合学术深度与市场潜力,为您呈现一幅全面且极具吸引力的自动驾驶技术全景图,开启智能交通新时代的探索之旅。本文内容均出自『自动驾驶之心知识星球』,欢迎加入交流,这里已经汇聚了近4000名自动驾驶从业人员,每日分享前沿技术、行业动态、岗位招聘、大佬直播等一手资料!
1、 题目: Generative Planning with 3D-vision Language Pre-training for End-to-End Autonomous Driving
链接: https://t.zsxq.com/GfgiU
简介: 基于3D视觉语言预训练的端到端自动驾驶规划生成
时间: 2025-01-16T23:41:03.107+0800
2、 题目: VLM-AD: End-to-End Autonomous Driving through Vision-Language Model Supervision
链接: https://t.zsxq.com/waJEA
简介: VLM-AD: 基于视觉语言模型监督的端到端自动驾驶
时间: 2024-12-21T10:40:06.378+0800
3、 题目: GenAD: Generative End-to-End Autonomous Driving
链接: https://t.zsxq.com/2LcNC
简介: GenAD:一种新的端到端自动驾驶范式
时间: 2024-02-20T23:01:28.229+0800
4、 题目: OpenEMMA: Open-Source Multimodal Model for End-to-End Autonomous Driving
链接: https://t.zsxq.com/nXHT8
简介: OpenEMMA,一个基于多模态大语言模型的开源端到端框架
时间: 2024-12-20T21:18:39.772+0800
5、 题目: Bench2Drive-R: Turning Real World Data into Reactive Closed-Loop Autonomous Driving Benchmark by Generative Model
链接: https://t.zsxq.com/534Ra
简介: Bench2Drive-R: 通过生成模型将现实世界数据转化为反应式闭环自动驾驶基准
时间: 2024-12-17T23:48:37.155+0800
6、 题目: WiseAD: Knowledge Augmented End-to-End Autonomous Driving with Vision-Language Model
链接: https://t.zsxq.com/2qotM
简介: WiseAD:基于视觉语言模型的知识增强端到端自动驾驶
时间: 2024-12-17T23:05:25.418+0800
7、 题目: Doe-1: Closed-Loop Autonomous Driving with Large World Model
链接:https://t.zsxq.com/nKyXO
简介: 统一感知、预测和规划!大型驾驶世界模型Doe-1来了
时间: 2024-12-13T11:32:30.902+0800
8、 题目: Preliminary Investigation into Data Scaling Laws for Imitation Learning-Based End-to-End Autonomous Driving
链接: https://t.zsxq.com/CQr4Q
简介: 基于模仿学习的端到端自动驾驶数据缩放规律初探
时间: 2024-12-04T20:12:01.970+0800
9、 题目: Senna: Bridging Large Vision-Language Models and End-to-End Autonomous Driving
链接: https://t.zsxq.com/4Soii
简介: Senna: 一种将LVLM(Senna-VLM)与端到端模型(Senna-E2E)相结合的自动驾驶系统
时间: 2024-10-30T20:55:45.010+0800
10、 题目: On Camera and LiDAR Positions in End-to-End Autonomous Driving
链接: https://t.zsxq.com/Zhw7R
简介: 相机和Lidar的位置对端到端自动驾驶有什么影响?
时间: 2024-10-25T18:54:33.755+0800
11、 题目: VADv2: End-to-End Vectorized Autonomous Driving via Probabilistic Planning
链接:https://t.zsxq.com/u6fm1
简介: VADv2来了!一种基于概率规划的端到端驾驶模型
时间: 2024-02-21T21:14:08.569+0800
12、 题目: End-to-end Driving in High-Interaction Traffic Scenarios with Reinforcement Learning
链接: https://t.zsxq.com/ZT2Wx
简介: Ramble:具有强化学习的高交互交通场景中的端到端驾驶
时间: 2024-10-12T19:52:27.580+0800
13、 题目: An Efficient Imitation Agent for End-to-End Autonomous Driving in Simulated Environments
链接: https://t.zsxq.com/7HcyJ
简介: 分享一种在模型大小、训练时间和所需数据集大小方面更简单、更高效的模型。它是完全端到端训练的,唯一的传感器输入是来自80°挡风玻璃摄像头的512×256图像。
时间: 2024-10-12T19:44:50.733+0800
14、 题目: End-to-End Autonomous Driving in CARLA : A Survey
链接: https://t.zsxq.com/IEia1
简介: CARLA中的端到端自动驾驶全面综述
时间: 2024-10-09T21:08:39.800+0800
15、 题目: HE-Drive: Human-Like End-to-End Driving with Vision Language Models
链接: https://t.zsxq.com/csf0x
简介: nuScenes 和 OpenScene 最新SOTA! 可提供最舒适的驾驶体验!HE-Drive:首个类人端到端自动驾驶系统
时间: 2024-10-08T21:07:14.578+0800
16、 题目: PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving
链接: https://t.zsxq.com/BeMRO
简介: 端到端预测和规划最新SOTA!一种用于端到端自动驾驶的新交互机制:PPAD
时间: 2024-10-06T23:27:02.313+0800
17、 题目: Does End-to-End Autonomous Driving Really Need Perception Tasks?
链接: https://t.zsxq.com/RKw4b
简介: 端到端自动驾驶真的需要感知任务吗?
时间: 2024-10-01T11:04:26.034+0800
18、 题目: RenderWorld: World Model with Self-Supervised 3D Label
链接:https://t.zsxq.com/n8wLc
简介: 具有自监督3D标签的世界模型!RenderWorld: 一种基于视觉的端到端自动驾驶框架
时间: 2024-09-19T00:05:59.381+0800
19、 题目: RobustE2E: Exploring the Robustness of End-to-End Autonomous Driving
链接: https://t.zsxq.com/NBIv7
简介: RobustE2E: 对四种端到端自动驾驶系统在各种噪声下的鲁棒性进行了详细分析
时间: 2024-08-20T23:40:54.218+0800
20、 题目: Exploring the Causality of End-to-End Autonomous Driving
链接: https://t.zsxq.com/VUJCb
简介: 首次揭开端到端自动驾驶的神秘面纱!
时间: 2024-07-25T21:43:58.446+0800
21、 题目: End-to-End Autonomous Driving without Costly Modularization and 3D Manual Annotation
链接: https://t.zsxq.com/u7eHF
简介: nuScenes开环SOTA! UAD:一种基于视觉的端到端自动驾驶方法
时间: 2024-06-26T23:18:35.687+0800
22、 题目: NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking
链接: https://t.zsxq.com/o1HEy
简介: NAVSIM: 数据驱动的非反应自动驾驶仿真和基准测试
时间: 2024-06-24T22:26:46.103+0800
23、 题目: Enhancing End-to-End Autonomous Driving with Latent World Model
链接: https://t.zsxq.com/8PAfY
简介: 谭铁牛院士团队新作:无需昂贵标注,增强端到端自动驾驶
时间: 2024-06-13T21:09:29.465+0800
24、 题目: DUALAD: Disentangling the Dynamic and Static World for End-to-End Driving
链接: https://t.zsxq.com/qYOT9
简介: DualAD不仅优于独立训练的单任务网络,而且在所有驾驶功能链任务上也大幅超越了先前最先进的端到端模型
时间: 2024-06-12T00:04:21.048+0800
25、 题目:基于视频世界模型的闭环端到端自动驾驶——陈韫韬
链接: https://t.zsxq.com/PXy6O
简介: 1、自动驾驶中信息利用的新趋势 2、闭环端到端驾驶的概念 3、端到端驾驶与生成世界模型
时间: 2024-05-29T23:48:02.487+0800
26、 题目: SparseAD: Sparse Query-Centric Paradigm for Efficient End-to-End Autonomous Driving
链接: https://t.zsxq.com/8EE91
简介: 端到端全任务最新SOTA! SparseAD: 高效端到端自动驾驶的稀疏query中心范式
时间: 2024-04-11T23:57:00.716+0800
27、 题目: HENet: Hybrid Encoding for End-to-end Multi-task 3D Perception from Multi-view Cameras
链接: https://t.zsxq.com/vCrLc
简介: HENet:多视图相机端到端多任务3D感知的混合编码网络
时间: 2024-04-04T23:54:19.822+0800
28、 题目: Integrating Modular Pipelines with Endto-End Learning: A Hybrid Approach for Robust and Reliable Autonomous Driving Systems
链接: https://t.zsxq.com/YWL6j
简介: 模块化pipeline与端到端学习的集成:一种鲁棒可靠的自动驾驶系统的混合方法
时间: 2024-02-15T11:46:22.779+0800
29、 题目: DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving
链接: https://t.zsxq.com/HA9BK
简介: DriveCoT:一个全面的端到端驾驶数据集
时间: 2024-03-27T08:32:36.068+0800
30、 题目: M2DA: Multi-Modal Fusion Transformer Incorporating Driver Attention for Autonomous Driving
链接: https://t.zsxq.com/3QxuN
简介: M2DA: 一种结合驾驶员注意力的多模态融合Transformer
时间: 2024-03-20T19:11:42.747+0800
端到端自动驾驶不仅是学术研究的前沿领域,更是未来智能交通的核心驱动力。通过对知识星球精选帖子的分析,我们看到了技术的突破与创新,同时也洞察到了巨大的商业潜力。无论是科研机构还是企业,都能从这些研究中找到未来发展的方向。自动驾驶的未来已来,让我们共同期待这一技术为人类出行带来的变革!
『自动驾驶之心知识星球』,近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(端到端自动驾驶、世界模型、仿真闭环、2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎扫描加入