作者 | 自动驾驶专栏 编辑 | 自动驾驶专栏
点击下方卡片,关注“自动驾驶之心”公众号
>>点击进入→自动驾驶之心『激光雷达』技术交流群
本文只做学术分享,如有侵权,联系删文
论文链接:https://arxiv.org/pdf/2502.18846
摘要

本文介绍了RL-OGM-Parking:自动泊车中基于激光雷达占用栅格地图的混合强化学习规划器。自动泊车已经成为自动驾驶研发中的关键应用。泊车操作往往受到有限空间和复杂环境的影响,需要准确感知和精确执行。传统基于规则的泊车算法难以适应多样化且不可预测的条件,而基于学习的算法在各种场景中缺乏一致且稳定的性能。因此,需要一种混合方法,将基于规则方法的稳定性和基于学习方法的泛化能力相结合。最近,基于强化学习(RL)的策略在规划任务中展现出强大的能力。然而,模拟到现实(sim-to-real)的迁移差距严重阻碍了在现实世界中部署。为了解决这些问题,本文采用了一种混合策略,它由基于规则的Reeds-Sheep(RS)规划器和基于学习的强化学习(RL)规划器组成。此外,本文还采用一种基于激光雷达的实时占用栅格地图(OGM)表示来缩小模拟到现实的差距,从而使得混合策略可以无缝应用于现实世界系统中。本文在仿真环境和现实世界场景中进行了大量的实验,结果表明,所提出的方法优于纯基于规则和基于学习的方法。现实世界实验进一步验证了所提出方法的可行性和效率。
主要贡献

本文的贡献总结如下:
1)本文提出了一种混合强化学习规划器,它将激光雷达占用栅格地图(OGM)作为训练和推理阶段的输入。OGM表示通过对齐模拟和现实世界的感知输入,有效地缩小了模拟到现实的差距;
2)本文在实车上部署了混合强化学习规划器以进行测试,并且验证了在各种现实世界场景中的泊车能力、可行性和泛化能力,为强化学习在自动泊车中的应用提供了有效的解决方案。
论文图片和表格

总结

本文提出了一种用于自动泊车的混合强化学习规划器,它利用实时占用栅格地图(OGM)进行感知。混合模型结合了基于规则的Reeds-Sheep(RS)规划器和基于学习的强化学习(RL)规划器,它将OGMs作为训练和推理阶段的输入。该方法有效地解决了模拟到现实的迁移差距,从而在现实世界场景中实现了精确且高效的泊车操作。本文在一系列仿真和现实世界泊车场景中评估了所提出的方法,展现了其在处理复杂泊车环境方面的出色能力。本文未来工作将着重于端到端模型和改进模拟器上,以提高泛化性和泊车性能。本文认为,本项工作将为推进自动驾驶领域的发展提供见解和实践经验。
① 自动驾驶论文辅导来啦
② 国内首个自动驾驶学习社区
『自动驾驶之心知识星球』近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(端到端自动驾驶、世界模型、仿真闭环、2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎扫描加入

③全网独家视频课程
端到端自动驾驶、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、CUDA与TensorRT模型部署、大模型与自动驾驶、NeRF、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)
④【自动驾驶之心】全平台矩阵