秦通组新作 | RL-OGM-Parking:自动泊车中混合强化学习规划器!

作者 | 自动驾驶专栏 编辑 | 自动驾驶专栏

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心『激光雷达』技术交流群

本文只做学术分享,如有侵权,联系删文

90e06e95444a9e53ddaa6ade3ef6cac3.png

  • 论文链接:https://arxiv.org/pdf/2502.18846

图片

摘要

图片

本文介绍了RL-OGM-Parking:自动泊车中基于激光雷达占用栅格地图的混合强化学习规划器。自动泊车已经成为自动驾驶研发中的关键应用。泊车操作往往受到有限空间和复杂环境的影响,需要准确感知和精确执行。传统基于规则的泊车算法难以适应多样化且不可预测的条件,而基于学习的算法在各种场景中缺乏一致且稳定的性能。因此,需要一种混合方法,将基于规则方法的稳定性和基于学习方法的泛化能力相结合。最近,基于强化学习(RL)的策略在规划任务中展现出强大的能力。然而,模拟到现实(sim-to-real)的迁移差距严重阻碍了在现实世界中部署。为了解决这些问题,本文采用了一种混合策略,它由基于规则的Reeds-Sheep(RS)规划器和基于学习的强化学习(RL)规划器组成。此外,本文还采用一种基于激光雷达的实时占用栅格地图(OGM)表示来缩小模拟到现实的差距,从而使得混合策略可以无缝应用于现实世界系统中。本文在仿真环境和现实世界场景中进行了大量的实验,结果表明,所提出的方法优于纯基于规则和基于学习的方法。现实世界实验进一步验证了所提出方法的可行性和效率。

图片

主要贡献

图片

本文的贡献总结如下:

1)本文提出了一种混合强化学习规划器,它将激光雷达占用栅格地图(OGM)作为训练和推理阶段的输入。OGM表示通过对齐模拟和现实世界的感知输入,有效地缩小了模拟到现实的差距;

2)本文在实车上部署了混合强化学习规划器以进行测试,并且验证了在各种现实世界场景中的泊车能力、可行性和泛化能力,为强化学习在自动泊车中的应用提供了有效的解决方案。

图片

论文图片和表格

图片

71433e4f772fc636d2361c52fe759841.png

26d417fdc6bc47aee4837336af891b03.png

5c26d354547e157efcabf33bf50e9ed0.png

c1d691a9a27d6da38991668689b38a8b.png

50f3c5c71a38250865b31b94e5391763.png

5f91e25df49ee15cf567f481f31d1b2e.png

fbf01427d48ee55182281ba7970027fe.png

图片

总结

图片

本文提出了一种用于自动泊车的混合强化学习规划器,它利用实时占用栅格地图(OGM)进行感知。混合模型结合了基于规则的Reeds-Sheep(RS)规划器和基于学习的强化学习(RL)规划器,它将OGMs作为训练和推理阶段的输入。该方法有效地解决了模拟到现实的迁移差距,从而在现实世界场景中实现了精确且高效的泊车操作。本文在一系列仿真和现实世界泊车场景中评估了所提出的方法,展现了其在处理复杂泊车环境方面的出色能力。本文未来工作将着重于端到端模型和改进模拟器上,以提高泛化性和泊车性能。本文认为,本项工作将为推进自动驾驶领域的发展提供见解和实践经验。

① 自动驾驶论文辅导来啦

c6d36ea1121045d510609306c8570b94.jpeg

② 国内首个自动驾驶学习社区

『自动驾驶之心知识星球』近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知端到端自动驾驶世界模型仿真闭环2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型,更有行业动态和岗位发布!欢迎扫描加入

52f2cd81a05c9f113dc14b61a743ff6f.png

 ③全网独家视频课程

端到端自动驾驶、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、CUDA与TensorRT模型部署大模型与自动驾驶NeRF语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

e0cf19bbb08bcfde2d28b17a847cd7c7.png

网页端官网:www.zdjszx.com

④【自动驾驶之心】全平台矩阵

58c3833beb9bd25955e9d00797ff99f9.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值