>>直播和内容获取转到→自动驾驶之心知识星球
预测驾驶场景中智能体的未来运动对于自动驾驶在动态的驾驶环境中安全运行至关重要。然而大规模驾驶数据集的稀缺阻碍了鲁棒和可泛化的运动预测模型的发展,限制了它们捕捉复杂相互作用和道路几何形状的能力。受自然语言处理(NLP)和计算机视觉(CV)最新进展的启发,自监督学习(SSL)在运动预测领域引起了广泛关注,用于学习丰富且可转移的场景表示。尽管如此,现有的运动预测预训练方法主要集中在特定的模型架构和单个数据集上,限制了它们的可扩展性和通用性。为了应对这些挑战,商汤和MMLab等团队提出了SmartPretrain,这是一个通用的、可扩展的运动预测SSL框架,既与模型无关,也与数据集无关。SmartPretrain整合了对比和重建SSL,利用生成和判别范式的优势,在不施加架构约束的情况下有效地表示时空演化和交互。此外,SmartPretrain采用了一种与数据集无关的场景采样策略,该策略集成了多个数据集,增强了数据量、多样性和鲁棒性。在多个数据集上进行的广泛实验表明,SmartPretrain在数据集、数据分割和主要指标上始终如一地提高了最先进的预测模型的性能。SmartPretrain将预测MAE的错误率显著降低了10.6%。这些结果突显了SmartPretrain作为运动预测的统一、可扩展解决方案的有效性,打破了小数据体制的限制。文章已发表在ICLR 2025~

论文链接:https://arxiv.org/abs/2410.08669
代码链接:https://github.com/youngzhou1999/SmartPretrain
今天自动驾驶之心很荣幸邀请到商汤科技研究院—Yang,为大家分享这篇ICLR中稿的SmartPretrain,今晚七点半锁定自动驾驶之心直播间不见不散~
国内首个自动驾驶学习社区
『自动驾驶之心知识星球』近4000人的交流社区,已得到300+自动驾驶公司与科研机构的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(大模型、端到端自动驾驶、世界模型、仿真闭环、3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案,更有行业动态和岗位发布!欢迎扫描加入

【自动驾驶之心】技术交流群
自动驾驶之心是国内领先的技术交流平台,关注自动驾驶前沿技术与行业、职场成长等。我们成立了一系列的技术交流群,涉及:端到端自动驾驶、大模型、车道线检测、2D/3D目标跟踪、2D/3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、点云处理、在线地图、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、Gaussian Splatting、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等多个方向!
备注:学校/公司+方向+昵称(快速入群方式)
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取