动手学深度学习(PyTorch实现)笔记(正式篇1)——线性回归

这篇笔记介绍了使用PyTorch实现线性回归的步骤,包括从零开始构建线性回归模型,数据生成,模型参数初始化,定义模型、损失函数和优化算法,以及训练模型的过程。
摘要由CSDN通过智能技术生成

动手学深度学习(PyTorch实现)笔记(正式篇1)(暂)

1. 线性回归

线性回归从零实现

  • 导入包或模块
%matplotlib inline
import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random
  • 生成数据集
num_inputs = 2                # 输入个数(特征数)
num_examples = 1000           # 数据集样本数
true_w = [2, -3.4]            # 线性回归模型真实权重
true_b = 4.2                  # 偏差
features = torch.randn(num_examples, num_inputs,
                      dtype=torch.float32)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()),
                      dtype=torch.float32)

此时,features 每一行是长度为 2 的向量;labels 每一行是长度为 1 的向量(标量)。

print(features[0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值