动手学深度学习(PyTorch实现)笔记(正式篇1)(暂)
1. 线性回归
线性回归从零实现
- 导入包或模块
%matplotlib inline
import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random
- 生成数据集
num_inputs = 2 # 输入个数(特征数)
num_examples = 1000 # 数据集样本数
true_w = [2, -3.4] # 线性回归模型真实权重
true_b = 4.2 # 偏差
features = torch.randn(num_examples, num_inputs,
dtype=torch.float32)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()),
dtype=torch.float32)
此时,features 每一行是长度为 2 的向量;labels 每一行是长度为 1 的向量(标量)。
print(features[0