如何优化和加速 CX 的 ROI

到 2020 年底,客户体验 (CX) 将取代价格和产品,成为让您在竞争中脱颖而出的主要差异化因素。

对于许多企业来说,这种状态已经成为现实。你只需要看看澳洲航空、优步和美国运通等行业领导者,就能意识到最成功的企业靠经验竞争和取胜。

但对于某些组织而言,他们的 CX 投资尚未完全成熟。部分原因是 CX 策略比 CX 执行更领先。也就是说,企业已经制定了他们的 CX 愿景,但尚未确定如何将其变为现实。

CX是一种必须执行的策略

在未来几年通过 CX 找到竞争优势的企业将通过更多地关注行动而不是基础数据来实现这一目标。

实现这一目标的一个关键推动因素将是超越基本指标的现代 CX 技术,它允许企业将所有类型的客户体验数据 (X-data) - 无论是响应时间还是在线评论 - 与运营数据 (O-data) -比如销售渠道和收入——更明智、更快速的决策。

关注客户体验价值和交易量

企业一直在寻找改善客户体验的方法。这意味着知道从哪里开始将您的 CX 策略转化为行动可能是一个艰难的决定。

为了加速和优化您的客户体验计划的投资回报率,优先考虑高价值和高容量的领域。链接 X-data 和 O-data 是解锁这些洞察力的基础,因为它不仅显示 CX 如何推动或降低您的绩效,而且将其与客户获取、保留和增长等业务成果联系起来。

例如,如果企业在线识别高水平的购物车放弃 (O-data),他们可以使用 X-data 确定客户不满意的原因,然后再解决问题。结果 - 基于有形事实的行动。

同样,如果 X-data 在您的客户旅程中遇到常见的痛点,您可以快速采取行动并解决影响大部分客户群的问题。

万事达卡是品牌将 X-data 和 O-data 联系起来以实现其 CX 计划目标的一个很好的例子,万事达卡能够将其 23 亿客户的满意度提高 23%。

成功地大规模使用人工智能

AI 和机器学习的出现在 CX 中产生了一个悖论。研究预测,到 2020 年底,85% 的客户交互将在没有人工交互的情况下发生,2 86% 的消费者更愿意与人工代理交互。

消费者不愿使用虚拟助手的部分原因是该技术仍处于起步阶段。

随着人工智能和机器学习技术被更广泛地采用和集成到客户旅程中,它们将在提供高质量数字化体验方面发挥核心作用,同时以允许实时人工干预的方式智能评估和响应客户情绪需要的地方。

美国领先的银行之一已经在使用语音分析来产生积极影响。通过在其呼叫脚本中添加两个问题,该银行将其调查回复率从 3% 提高到 90%。

这种显着的增长为银行提供了前所未有的客户洞察力,这些洞察力更能代表客户群,可以倾听、理解并采取行动。这是一个小变化如何对整个组织产生高价值影响的例子。

import sensor, image, time, mathfrom pyb import UART#threshold_index = 0 # 0 for red, 1 for green, 2 for blue # 颜色跟踪阈值 (L Min, L Max, A Min, A Max, B Min, B Max)# 下面的阈值通常跟踪红色/绿色/蓝色的东西。您可能希望调整它们……thresholds = [(50, 65, 40, 50, 35, 60), # generic_red_thresholds (75, 90, -80, -70, 40, 80), # generic_green_thresholds (55, 70, -21, 0, -50, -35)] # generic_blue_thresholds sensor.reset()#重置感光元件,重置摄像机sensor.set_pixformat(sensor.RGB565) #设置颜色格式为RGB565,彩色,每个像素16bit。sensor.set_framesize(sensor.QVGA) #图像大小为QVGAsensor.skip_frames(time = 2000) #跳过n张照片,在更改设置后,跳过一些帧,等待感光元件变稳定。sensor.set_auto_gain(False) #颜色识别必须关闭自动增益,会影响颜色识别效果sensor.set_auto_whitebal(False) #颜色识别必须关闭白平衡,会影响颜色识别效果,导致颜色的阈值发生改变clock = time.clock() uart = UART(3, 9600) #初始化串口3,波特率为9600(注意:上位机记得也配置成9600) # 只有像素大于“pixels_threshold”面积大于“area_threshold”的区域才是# 由下面的"find_blobs"返回。更改“pixels_threshold”“area_threshold”# 相机的分辨率。"merge=True"合并图像中所有重叠的斑点。 while(True): clock.tick()# 追踪两个snapshots()之间经过的毫秒数. img = sensor.snapshot()#截取感光元件中的一张图片 img.lens_corr(1.8) # 1.8的强度参数对于2.8mm镜头来说是不错的。 #在img.find_blobs这个函数中,我们进行颜色识别 #roi是“感兴趣区”,是在画面的中央还是右上方或者哪里进行颜色识别。此处我们没有进行配置,默认整个图像进行识别 for blob in img.find_blobs([thresholds[0]], pixels_threshold=200, area_threshold=200, merge=True): # 这些值始终是稳定的。 uart.write("0") print('0') img.draw_rectangle(blob.rect()) #用矩形标记出目标颜色区域 img.draw_cross(blob.cx(), blob.cy()) #在目标颜色区域的中心画十字形标记 for blob in img.find_blobs([thresholds[1]], pixels_threshold=200, area_threshold=200, merge=True): # 这些值始终是稳定的。 uart.write("1") print('1') img.draw_rectangle(blob.rect()) #用矩形标记出目标颜色区域 img.draw_cross(blob.cx(), blob.cy()) #在目标颜色区域的中心画十字形标记 for blob in img.find_blobs([thresholds[2]], pixels_threshold=200, area_threshold=200, merge=True): # 这些值始终是稳定的。 uart.write("2") print('2') img.draw_rectangle(blob.rect()) #用矩形标记出目标颜色区域 img.draw_cross(blob.cx(), blob.cy()) #在目标颜色区域的中心画十字形标记 for code in img.find_qrcodes(): # 进行二维码检测 img.draw_rectangle(code.rect(), color = (255, 0, 0)) message = code.payload() #返回二维码有效载荷的字符串 if message == 'red': uart.write("0") print('0') if message == 'green': uart.write("1") print('1') if message == 'blue': uart.write("2") print('2')
03-23
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值