基准时间限制:1 秒 空间限制:131072 KB 分值: 10
难度:2级算法题
有若干个活动,第i个开始时间和结束时间是[Si,fi),同一个教室安排的活动之间不能交叠,求要安排所有活动,最少需要几个教室?
Input
第一行一个正整数n (n <= 10000)代表活动的个数。 第二行到第(n + 1)行包含n个开始时间和结束时间。 开始时间严格小于结束时间,并且时间都是非负整数,小于1000000000
Output
一行包含一个整数表示最少教室的个数。
Input示例
3 1 2 3 4 2 9
Output示例
2
1.将区间以左端点由小到大排序
2.创建优先队列(小优先级高)Q,将第一个区间的右端点加入Q。
遍历区间(2->n),将当前区间 ai 的左端点 r 与Q.top() 比较 :
若大于(说明可以共用一间教室)则更新Q.top(), (Q.pop(); Q.push(r))
小于(说明不能共用一间教室) 则 教室数 Sum++; 将 ai的右端点加入 Q
思路的关键点在于每次 r 只需要和 Q.top() 比较:由于Q.top() 为所有教室可以使用的最早时间,
故只要当前时间区间的开始时间比 Q.top()大或等于,则可以共用一间教室
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int MAX_N=10005;
struct node{
int l;
int r;
bool operator<(const node &x){
return l<x.l;
}
}a[MAX_N];
int n,Sum;
priority_queue<int,vector<int>,greater<int>> Q;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n;
for(int i=0;i<n;++i)
cin>>a[i].l>>a[i].r;
sort(a,a+n);
Q.push(a[0].r); Sum++;
for(int i=1;i<n;++i)
{
if(a[i].l>=Q.top()){
Q.pop();
}else Sum++;
Q.push(a[i].r);
}
cout<<Sum<<endl;
return 0;
}