假设有电源Vu通过电阻R给电容C充电,V0为电容上的初始电压值,Vu为电容充满电后的电压值,Vt为任意时刻t时电容上的电压值,那么便可以得到如下的计算公式:
Vt = V0 + (Vu – V0) * [1 – exp( -t/RC)]
如果电容上的初始电压为0,则公式可以简化为:
Vt = Vu * [1 – exp( -t/RC)]
由上述公式可知,因为指数值只可能无限接近于0,但永远不会等于0,所以电容电量要完全充满,需要无穷大的时间。
当t = RC时,Vt = 0.63Vu;
当t = 2RC时,Vt = 0.86Vu;
当t = 3RC时,Vt = 0.95Vu;
当t = 4RC时,Vt = 0.98Vu;其实4被RC差不多就可以了,后面差别不大了。
当t = 5RC时,Vt = 0.99Vu;
可见,经过3~5个RC后,充电过程基本结束。
波形稳定时间大概是5T。
PWM 模拟DAC,经过RC滤波,滤波的稳定时间。
PWM的频率越快 波形越干净,低频谐波小。
但是分辨率降低。
在实际电路中,适当修改R或者C来匹配实际电路应用。
1K+104 RC 实际测试电阻为982欧姆 电容实际为52nF.
计算实际稳定时间为192us左右,公式计算理论4RC为181us.
RC滤波是有损耗的,电阻会消耗信号一部分能源。