numpy中的np.c_和np.r_详解

【时间】2018.12.03

【题目】numpy中的np.c_和np.r_详解

 

一、np.c_和np.r_用于连接两个矩阵

np.r_中的r是row(行)的缩写,是按行叠加两个矩阵的意思,也可以说是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat()。

np.c_中的c是column(列)的缩写,是按列叠加两个矩阵的意思,也可以说是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的merge()。

二、示例说明

【代码】

import numpy as np

a = np.array([1, 2, 3]).reshape(1,3)

b = np.array([4, 5, 6]).reshape(1,3)

print(a.shape,b.shape)

print("a=",a,"b=",b)

c = np.c_[a,b]

print("np.c_[a,b]:\n",c)

print(c.shape)

d=np.r_[a,b]

print("np.r_[a,b]:\n",d)

print(d.shape)

【运行结果】:

 

【注意】若不使用reshape(1,3),则默认是列向量,虽然依旧以行向量的形式显示,如下:

【代码】

import numpy as np

a = np.array([1, 2, 3])

b = np.array([4, 5, 6])

print(a.shape,b.shape)

print("a=",a,"b=",b)

c = np.c_[a,b]

print("np.c_[a,b]:\n",c)

print(c.shape)

d=np.r_[a,b]

print("np.r_[a,b]:\n",d)

print(d.shape)

【运行结果】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值